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Some atmospheric parameters
are hard to include in simulations.
Simulations are often for simpler
conditions than
in real life.

K. Bernlohr, AtmoHEAD, 2013-06-10 2



showers and measurement met

=+—— First interaction (usually several 10 km high}

Alr shower evolves (particles are created

> and most of them later stop or decay)
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fluorescence lHght

(Fly’s Eye)
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2article detector array or telescopes

Different impact of atmospheric parameters on different
detection techniques:

> Particle detectors: Only shower development:
- Density profile is relevant
- Composition not very relevant

> Light detectors (in particular telescopes):
Shower development + light emission & propagation:
- Density profile
- Index of refraction (emission & refraction)
- Composition important for absorption (e.g. ozone)
- Aerosol distribution and properties
(for extinction and scattering)
- Nightsky background light
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Examples of shower development
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ower development + density profi

* Ground level measurements (p, g) will tell you the
total atmospheric overburden above a site.
+ That will not be enough for a detailed simulation of a
particle detector array because of
- the competition between interaction and decay of
unstable particles (pions, kaons) in the shower

development (relevant e.qg. for e/[ ratio),
> with different profiles of identical ground-level pressure
having different longitudinal shower development;

- different heights of given atmospheric depths result
in different lateral distributions;

- differences also in multiple scattering, also
resulting in different lateral distributions.
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Assumptions in shower simulatio

Typical shower simulation programs make assumptions

(for efficiency or due to lack of knowledge) like

+ piecewise exponential density profile,

+ either using only an all-year average profile or at best
a few seasonal average profiles,

*+ constant composition,

* (constant and uniform B field,)

and for Cherenkov & fluorescence light typically assume

* index of refraction assumed wavelength-independent,

* changes in absorption by trace gases (ozone etc.)
often neglected,

+ simplified scattering phase function for aerosols.

K. Bernlohr, AtmoHEAD, 2013-06-10 7



Scattering phase functions
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e-related parameters not discussec

here in detail

* Night-sky background light
- Air glow
- Zodiacal light
- Star light
- Anthropogenic light pollution
+ (Geomagnetic field
- Rigidity cutoff (0,¢)
- Separation of +/- charged particles
- Spreading & asymmetry of lateral distribution
- Image distortion (Cherenkov telescopes)
+ Site altitude
- Energy losses
- Closeness to shower maximum

K. Bernlohr, AtmoHEAD, 2013-06-10




Cherenkov light emission

K. Bernlohr, AtmoHEAD, 2013-06-10
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Cherenkov light emission

Basic formulae:

1, gty oL
cosO = " + 2p(1 n2) 0
hy
dN 2 1 d\

— = 2na ] —
T

Recoil can be safely neglected.

Wavelength dependence of index of refraction is often neglected
(for efficiency reasons).
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Index of refraction
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Between 300 nm and 700 nm only rather small change.
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Index of refraction
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Impact of humidity on index of refraction is of little relevance.
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Atmospheric profiles

Different temperature profiles result in different density
profiles and different relations between atmospheric
depth X and altitude H.

Lower temperatures mean smaller density scale height:
Fixed X (for example X)) is at lower H.

The shower maximum iIs then closer to the observer.

The atmospheric density at the shower maximum is
larger, and therefore also the index of refraction.
More Cherenkov light gets emitted at larger
opening angles.

More particles above Ch. emission threshold.

K. Bernlohr, AtmoHEAD, 2013-06-10 14



Atmospheric profiles
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mospheric profiles example: Namik
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Impact of atmospheric profiles:

ateral distribution of Cherenkov lic
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300—-600 nm photons / m#x2 (no abs.)

Different profiles similar to

Lateral distributions for E = 30 GeV at h = 1500, 2500, 3500, and 4500 m

different site altitude
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Distance from shower max. to obs. level is what counts mainly.
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Impact of atmospheric profiles:

ateral distribution of Cherenkov lic

Seasonal variations !
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finction of Cherenkov lic

Due to different processes, Cherenkov light gets lost along the line

of sight to the observer.
K. Bernlshr, AtmoHEAD, 2013-06-10 20



Extinction of Cherenkov

or fluorescence light

Extinction of Cherenkov or fluorescence light due to:
* Molecular (Rayleigh) scattering
+ Aerosol (Mie) scattering and absorption

* Molecular absorption on ozone:
Hartly bands (200-300 nm)
Huggins bands (up to 340 nm)
Chappuis bands (near 600 nm, weak: few %)

* Molecular absorption on oxygen:
Herzberg continuum (below 242 nm)
Herzberg band (~260 nm) and others below 190 nm

+ Absorption by water vapour (weak)

K. Bernlohr, AtmoHEAD, 2013-06-10 21



Extinction processes
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mission from different altitudes to

experiment
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pact of high clouds / cirrus

T, sr Begin UTC: 2009-07-10 03:45:13.6992 End UTC: 2009-07-10 04:07:16.9501
Version: 202 Expedited [mage Date: 07/11/2009 http://alg.umbc.edu/usaq/archives/003412.html

Clouds at high altitude, in particular thin cirrus clouds
or ashes (from biomass burning or volcanic events)
might go unnoticed in normal Cherenkov (fluorescence)
observations but could have an impact on image

shape (or long. profile for fluorescence obs.).

K. Bernlohr, AtmoHEAD, 2013-06-10 24



Cloud:

K. Bernl¢

pact of a cloud on Cherenkov image

H=100 km

+ pixel above threshold
pixel in selected image
X simulated direction

(© reconstructed direction Eg
- QQOOOQQ L>A=

4 10 20 40 100 200 p.e.

Primary: gamma of 2.000 TeV energy at 200 m distance

Assuming a H.E.S.S.-1-like
telescope, no night-sky light,
and full absorption by a
cloud layer at the given
height.

Shower develops
in this direction.
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pact of a cloud on Cherenkov image

H=20 km

+ pixel above threshold
pixel in selected image
X simulated direction =
(© reconstructed direction i y
second moments
o (172) QQOC}Q.. Az

4 10 20 40 100 200 p.e.

Primary: gamma of 2.000 TeV energy at 200 m distance
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pact of a cloud on Cherenkov image

H=15 km

+ pixel above threshold
pixel in selected image
X simulated direction =
(© reconstructed direction i y
second moments
o (172) QQOC}Q.. Az

4 10 20 40 100 200 p.e.

Primary: gamma of 2.000 TeV energy at 200 m distance
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K. Bernl¢

pact of a cloud on Cherenkov image

H=12 km

+ pixel above threshold
pixel in selected image
X simulated direction =
(© reconstructed direction i y
second moments
o (172) QQOC}Q.. Az

4 10 20 40 100 200 p.e.

Primary: gamma of 2.000 TeV energy at 200 m distance
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pact of a cloud on Cherenkov image

H=10 km

+ pixel above threshold
pixel in selected image
X simulated direction =
(© reconstructed direction i y
second moments
o (172) QQOC}Q.. Az

4 10 20 40 100 200 p.e.

Primary: gamma of 2.000 TeV energy at 200 m distance
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K. Bernl¢

pact of a cloud on Cherenkov image

- &y
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Primary: gamma of 2.000 TeV energy at 200 m distance

Clouds and aerosol
layers between ~5 km
and ~20 km result

in distortion of images
(longitudinal shower
profiles).
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The boundary layer

Diurnal convection and S=TUR (LG T 7 6=

turbulence raises aerosols from
ground.

L BpPr —rLCg 7H

0 2 L S eyl

A boundary layer of 1 to 2 km thickness has a higher
aerosol content than the air above.
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Aerosols in the boundary layer

Aerosol content and composition in the boundary layer
depends on the history of the air during the last
several days: over which surface, wind speed,
turbulence, precipation ...

Aerosols (including hydrosols) can change with
temperature/humidity.

Models can be adapted to reality with
Observations of star light extinction (stable nights).
Backscatter LIDAR measurements of vertical
structure of aerosols.
Use of multi-wavelength and/or Raman LIDAR.
Measurements of scattering phase function.

K. Bernlohr, AtmoHEAD, 2013-06-10
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Importance of air flow

Aerosol content above
observer not just a
function of altitude H
but also of the air flow,
where it came from
etc.

H
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Individual extinction sources:

the real trouble: aerosols
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You need measurements to decide which model is most appropriate!
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Scattered Cherenkov lig

Scattered light may fall into the field of view — but typically later

than direct IiE% t from the shower. Integration time matters.
K. Bernlohr, AtmoHEAD, 2013-06-10
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Scattering phase functions
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Relevance of scattered

Cherenkov light

10-|||||| | |||||||| | |--|||||| | | ||||||| I |
| direct light || direct light
1E - =
o~
g ol 11
= 10  aerosol scattered ][ aerosol scattered ]
w
S 102 11 Rayleigh
= - Rayleigh :
Q
D A
(D) 10_3 - -
O i
-~
g
A 107 L -
1073 | . i \
| Integration: 100 ns [ Integration: 1000 ns '
Ll Lo 1l | |--|||||| Lol L

100 1000 100 1000

Core distance [ m ]
K. Bernlghr, AtmoHEAD, 2013-06-10 37



Relevance of scattered
Cherenkov light
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Relevance of scattered

Cherenkov light

For Cherenkov experiments, scattered Cherenkov light is
iInsignificant since
a) Integration times are short (< 100 ns)

b) Gamma-showers only observed at distances
below 1000 m due to small field of view.

Even for CTA just a small contribution.

For fluorescence experiments (observing at large core
distances, large integration times), the scattered light
can exceed the direct light and Rayleigh scattering

can exceed Mie scattering (mainly Cherenkov light — at
small core distances Cherenkov light always dominates;
scattered fluorescence light only relevant

at very large core distance).
K. Bernlshr, AtmoHEAD, 2013-06-10 39




Atmospheric refraction

Accurate source locations require correction for
atmospheric refraction (~1' at 45° for star light).

K. Bernlohr, AtmoHEAD, 2013-06-10
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Atmospheric refraction
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Knowledge of the atmospheric profiles is needed for
proper simulation of any air shower instrument.

Instruments observing Cherenkov or fluorescence light
depend on many additional parameters.

Extinction of light depends on aerosols and trace gases
(in particular ozone, also near ground: UV only).

The most important cross-check for any aerosol model is
star-light extinction in the B and V (blue and green).

High clouds or aerosol layers can be tricky for data
analysis and need to be monitored.

Scattered light is only for the fluorescence folks.
Refraction corrections needed for accurate positions.

K. Bernlohr, AtmoHEAD, 2013-06-10 42
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