Muon efficiency with the HESS telescope

Raphaël Chalmé-Calvet

11 June 2013

Raphaël Chalmé-Calvet

Calibration of HESS cameras

2 Muon efficiency : Theory

Muon efficency : Application

- 4 (+1) Telescopes :
 - Mount : Davis-Cotton (Parabolic)
 - Radius : \sim 6.5 m (\sim 15.5 m)
 - Focal length : 15 m (30 m)
 - Total mirrors area : 107 m² (600 m²)

• 4 (+1) Cameras :

- Field of view : 5° (3.1°)
- 960 photomultipliers (2048 PM)
- Fast electronic :
 - Sampling : 1 ns
 - Reading window : 16 ns

Gain calibration

Need to know the accurate conversion between ADC counts and photoelectrons (p.e.) $% \left(\left(p,e,e\right) \right) \right) =\left(\left(p,e,e\right) \right) \right) =\left(\left(p,e,e\right) \right) +\left(\left(p,e,e\right) \right) \right)$

• Optical calibration :

Need to know the number of Cherenkov photons lost in the telescope :

- Mirror reflectivity
- Translation from mirrors to the camera
- Losses between Winston Cone
- Quantum efficiency of the PMs

Outline

Calibration of HESS cameras

- Calibration parameters
- Gains
- Pedestal
- Flat-Field
- Broken Pixels

Amplitude in photo-electrons (p.e.) for low and high gains (LG and HG) :

$$A^{HG} = \frac{ADC^{HG} - P^{HG}}{\gamma_e^{ADC}} \times FF$$
$$A^{LG} = \frac{ADC^{LG} - P^{LG}}{\gamma_e^{ADC}} \times \frac{HG}{LG} \times FF$$

with :

- γ_e^{ADC} : gain of the high gain channel (in ADC/p.e.)
- P^{HG} and P^{LG} : ADC position of the base-line for both channels (pedestal)
- $\frac{HG}{LG}$: amplification ratio of high gain to low gain
- FF : flat-field coefficient

- Single p.e. illumination of the camera in nominal configuration
- High gain γ_e^{ADC} are extracted from a fit to the ADC count distribution of each pixel
- The signal distribution can be simply described by a sum of gaussians :

$$\mathcal{G}(x) = N \times \left(\frac{e^{-\mu}}{\sqrt{2\pi\sigma_P}} \exp\left[-\frac{1}{2} \left(\frac{x-P}{\sigma_P} \right)^2 \right] + \kappa \sum_{n=1}^{m \gg 1} \frac{e^{-\mu}}{\sqrt{2\pi\sigma_{\gamma_e}}} \frac{\mu^n}{n!} \exp\left[-\frac{1}{2} \left(\frac{x-(P+n\gamma_e^{ADC})}{\sigma_{\gamma_e}} \right)^2 \right] \right)$$

Mean high gain history for CT3

2013

- High and low gain channels are linear in the 30 to 150 p.e. range
- In this range : Ratio of the signals = Amplification ratio between the two channels
- Multiplying this ratio by the high gain directly gives the low gain

Pedestal

- The pedestal position is defined as the mean ADC value recorded in absence of Cherenkov light
- Pedestal are estimated on each pixel that doesn't contain Cherenkov light
- Pedestals are determined during observation runs as often as possible (approximately every minute)
 ⇒ Consideration of camera temperature variations

Pedestal mean doesn't vary with usual Night Sky Background (NSB) rate in Namibia (RC circuit)

Flat-Field coefficient

- Flat-field coefficients corrects the inhomogeneity between pixels
 - Quantum efficiency
 - Winston cone light collection efficiencies

• FF are determined during special flat-filed runs using LED flashers mounted on the telescope dish providing an uniform illumination

Flat-field coefficients are quite constant over time (=) = 🔗 🔍

Calibration of HESS cameras

2 Muon efficiency : Theory

- Theoretical muon efficiency
- Muon behavior and parameters in a IACT
- Muon ring model for a circular mirror

3 Muon efficency : Application

- Studying muon efficiency is the only way to understand the losses of Cherenkov photons in the detector
- HESS mirrors can only see the muon trajectory on the 400 last meters above HESS
 - \Rightarrow They only lose a few energy over this distance
- From muon parameters we can know the number of Cherenkov photons it emitted
 - \Rightarrow We can compare this number to the one we have in the camera

\Rightarrow Global telescope efficiency

• From muons study, we want to reconstruct the gloabal efficiency of the HESS telescope for γ photons, ie :

 $\epsilon_{\rm global} {=} \frac{\# \text{ of photon-electrons}}{\# \text{ of photons hitting HESS mirrors}}$

Definition of global efficiency

• Calculation method of theoretical efficiency from telescope simulation

Global Efficiency

 $\epsilon_{\mathsf{global}} = \epsilon_{\mathsf{PM}} \times \epsilon_{\mathsf{shadow}} \times \epsilon_{\mathsf{reflectivity}} \times \epsilon_{\mathsf{collection}}^{1}$

 $\epsilon_{\rm PM} = \frac{\# \text{ of photons with PM}}{\# \text{ of input photons without PM}}$

$$\epsilon_{\mathsf{shadow}} = 1$$
 - $rac{\# ext{ of input photons in shadow}}{\# ext{ of input photons}}$

$$\epsilon_{
m reflectivity} = 1$$
 - $rac{\# ext{ of photons absorbed}}{\# ext{ of input photons - } \# ext{ in shadow}}$

$$\epsilon_{\text{collection}} = \frac{\# \text{ of photons in pixels}}{\# \text{ of photons leaving mirrors}}$$

1. $\epsilon_{\text{collection}} = \text{losses between Winston cones and for high-angles}$

Raphaël Chalmé-Calvet

Muon ring pictures in the camera

Muon efficiency with the HESS telescope

11 June 2013 13 / 27

Muon ring pictures in the camera

Raphaël Chalmé-Calvet

Muon efficiency with the HESS telescope

11 June 2013 14 / 27

- Muon ring reconstruction parameters :
 - Cherenkov angle $\theta_{c} = ring radius$
 - Impact parameter ρ
 - Incidence angle ξ between muon trajectory and the optical axis
 center position of the ring (x,y)
 - Gaussian ring width σ
 - $\bullet\,$ Azimuthal angle of maximum intensity of the ring $\phi\,$
 - Global efficiency of the telescope Ψ

Muon ring model for circular mirror

Fig. 2. Geometry of emission for a muon falling outside (a) or inside (b) the mirror. ρ = impact parameter of the muon; R = radius of the mirror; ξ = angle of incidence; $\tilde{\theta}$ = Čerenkov angle of emission.

where :

- $\Psi(\lambda)$ is the global efficiency
- $a(r, \lambda)$ is the absorption coefficient
- σ_T is the gaussian width of the ring

Rovero et al. (1996) Number of photons in the camera :

$$\frac{\mathrm{d}^{3}N}{\mathrm{d}l\,\mathrm{d}\phi\,\mathrm{d}\lambda} = \frac{\alpha}{2}\,\sin(2\theta_{\mathrm{c}})\frac{\psi(\lambda)}{\lambda^{2}}D(\phi)a(l,\,\lambda)$$

Number of photons per pixel : $\frac{d^{4}N_{i}}{dr d\phi d\lambda d\theta} = \frac{\alpha}{2} \sin(2\theta_{c}) \frac{\psi(\lambda)}{\lambda^{2}} \frac{D(\phi)a(r, \lambda)}{\sqrt{2\pi}\sigma_{T}(r, \theta_{c})} \\ \times \exp\left(-\frac{(\theta-\theta_{c})^{2}}{2\sigma_{T}^{2}(r, \theta_{c})}\right) \qquad (2)$

 D(φ) is a chord defined by the intersection with the mirror and the plane of the photons trajectory

Muon ring model for circular mirror

Fig. 2. Geometry of emission for a muon falling outside (a) or inside (b) the mirror. ρ = impact parameter of the muon; R = radius of the mirror; ξ = angle of incidence; θ = Čerenkov angle of emission.

Rovero et al. (1996) **Number of photons in the camera :** $\frac{d^{3}N}{dl \ d\phi \ d\lambda} = \frac{\alpha}{2} \sin(2\theta_{c}) \frac{\psi(\lambda)}{\lambda^{2}} D(\phi) a(l, \lambda)$

Number of photons per pixel : $\frac{d^4 N_i}{dr \ d\phi \ d\lambda \ d\theta} = \frac{\alpha}{2} \sin(2\theta_c) \frac{\psi(\lambda)}{\lambda^2} \frac{D(\phi) a(r, \lambda)}{\sqrt{2\pi} \sigma_{\rm T}(r, \theta_c)}$ $\times \exp\left(-\frac{(\theta - \theta_c)^2}{2\sigma_{\rm T}^2(r, \theta_c)}\right) \qquad (2)$

$$D(\phi) = 2R\sqrt{1 - (\rho/R)^2 \sin^2 \phi}$$
 if $\rho > R$

$$D(\phi) = R\left(\sqrt{1 - (
ho/R)^2 \sin \phi^2} + (
ho/R) \cos \phi
ight) \qquad ext{if }
ho \leq R$$

Raphaël Chalmé-Calvet

Calibration of HESS cameras

2 Muon efficiency : Theory

Muon efficency : Application

- Calibration curve from atmosphere and detector simulation
- From muon efficiency to gamma efficiency
- Application to real data

Photons distribution at the ground from muon emission Simulations

20 GeV muons launched 1000 m above HESS

$$\frac{\mathrm{d}^{4}N_{i}}{\mathrm{d}r\,\mathrm{d}\phi\,\mathrm{d}\lambda\,\mathrm{d}\theta} = \frac{\alpha}{2}\,\sin(2\theta_{c})\frac{\psi(\lambda)}{\lambda^{2}}\frac{D(\phi)a(r,\lambda)}{\sqrt{2\pi}\sigma_{\mathrm{T}}(r,\theta_{c})} \times \exp\left(-\frac{(\theta-\theta_{c})^{2}}{2\sigma_{\mathrm{T}}^{2}(r,\theta_{c})}\right)$$
(2)

- The first difficulty is to take into consideration the absorption of the atmosphere in the muon ring model
- It depends of the emission depth of the considered particule
- We have to replace $\int_{\lambda_1}^{\lambda_2} \frac{a(r,\lambda)}{\lambda^2} d\lambda$ in the model by the integral over a simulated photons distribution at the ground from muon emission (in yellow)

11 June 2013 18 / 27

Calibration curve from MC muons

- Calibration curve is linear with wavelength
- Excepted starting from 270 nm where the quantum efficiency begins to be too high

- As the calibration is linear, we can choose any wavelength lower limit in the integral
- We choose to integrate from 270 to 700 nm to not be annoyed by abosption

From muon efficiency to gamma efficiency

Cerenkov photons distributions for muons and gammas

- For gammas, the UV photons are largely absorbed by the 10 km atmosphere
- Due to this effect, gamma efficiency is different from muon one

Raphaël Chalmé-Calvet

From muon efficiency to gamma efficiency

- So, to reconstruct the gamma efficiency, we have to :
 - calculate the theoritical gamma efficiency
 - eacloulate the conversion factor between theoritical gamma efficiency and reconstructed muon efficiency
 - **3** apply this factor to the reconstructed muon efficiency

From muon efficiency to gamma efficiency

- So, to reconstruct the gamma efficiency, we have to :
 - calculate the theoritical gamma efficiency
 - eacloulate the conversion factor between theoritical gamma efficiency and reconstructed muon efficiency
 - **③** apply this factor to the reconstructed muon efficiency

We found 10.4% as theoritical gamma efficiency and 11.9% \pm 0.1% as reconstructed muon efficiency \Rightarrow Conversion factor : 0.87 \pm 0.01

Variation with optical efficiency (from MC)

Except at low optical effiency (\leq 50%), the reconstruction is linear with opt. eff. and the slope is nearly 1 as expected

Application to real data

Some fitted muons in a real run

Raphaël Chalmé-Calvet

Muon efficiency with the HESS telescope

11 June 2013 23 / 27

Application to real data

Efficiency distribution for one real run (200 000 events)

Application to real data Efficiency over time : CT1 and CT2

Application to real data Efficiency over time : CT3 and CT4

- Calibration parameters of the HESS cameras are well reconstructed and monitered over years
- Muon efficiency study needs a calibration from MC study
- It needs a good knowledge in :
 - atmospheric model for cherekenov light absorption
 - developpement of electromagnetic showers from gamma photons in the atmosphere
 - muon propagation in the atmosphere
 - detector simulation