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(Early Attempts at) Atmospheric
Correction With H.E.S.S. (Phase 1)

Sam Nolan, Cameron Rulten




More Recent H.E.S.S. Related Work

Radiometers — See Michael Daniel’s Talk
- Lidar — See George Vasileiadis Talk
- Aerosols at H.E.S.S. site — P Ristori

and many others ...



- The Problems
- Equipment in Namibia
- Relative Methods of Correction

- In Search of Absolute Correction
- Active Atmospheric Correction
- Short Comings of This Method

. Conclusions & Future Work



Two Classes of Problem for IACT s

High Level Aerosols (e.g. clouds) which can occur
around shower-max and so affect Cherenkov yield &

image shape etc.

Low Level Aerosols (near to ground level) which act as
a filter, lowering the Cherenkov yield.
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Ceilometer

| BackScatter-Profile |
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Commercial
Ceilometer with 7km
range operating at
905nm operated at
H.E.S.S. site from
2002-2007.

Co-pointed with
telescopes

Used routinely by
shift crew to check
atmospheric quality.

Could be set to look
at next observing
position to check
clarity elsewhere.
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Methods of atmospheric correction (1)

- Throw Data Away

- Use parts of runs unaffected by bad weather,
e.g. fleeting clouds.

- Scale by differences in background cosmic-ray
distribution (e.g. image amplitude or size),
relative to a “clear” night, e.g. throughput ().

- Scale by differences in changing optical
properties of starlight derived from optical
telescopes relative to a “clear” night.
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cosmic-ray and gamma-ray simulation
database, and compare telescope simulation
to real data, varying atmospheric model (within
limits) until simulations & real data agree.
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Use
Ceilometer
to assess
dust position

Significant
Computing

Expense

Simulate Apply different
atmospheres atmospheric

-+ With dust of -~ models to
differing cosmic-ray
opacities simulations
Apply Compare
atmospheric simulations with
model to real background
gamma-ray cosmic-ray data
simulations until best match

Produce gamma-
ray lookup tables

—»

Apply to the
Data




Lookup Tables

Energy (Core Position, Image Brightness, Zenith
Angle)

. Effective Area(Reconstructed Energy, Zenith Angle,
Offset)

- Mean Scaled Length (Core Position, Image Brightness,
Zenith Angle)



65_deg Impact Parameter vs IA
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- By lowering Cherenkov yield from a given
shower, the dust will have 2 effects:

- Decreasing the efficiency of the telescope for
detecting gamma-rays, particularly those of lower
energy.

- Allow miscalculation of the energy of a given event.
For the worst cases seen at the H.E.S.S. site can
be out by almost 50%.



Changing Effective Area

A, )
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Low level aerosols effect both the triggering and the energy
reconstruction, as shown here in terms of effective area - true
energy (Ihs) and reconstructed energy (centre and rhs)



Changing Energy Resolution

If no correction is attempted with increasing low level
aerosols (“dust”) the Cherenkov yield from an event of

given energy and core location will be less.
- Without correction this will lead to a bias in the
reconstructed energy

This can be thought of as a systematic offset or bias in
the energy resolution

((ERECO'ETRUE)/ETRUE)'



Changing Energy Resolution
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Comparing With Real Data

During August each year several nights of
observations are lost due to low-level dust of the kind

described.

- For example in 2004, a multi-wavelength campaign
was running on PKS2155-304 and almost 70% (60 hrs)
of the data was affected.

- Although the inter night variability in cosmic-ray
trigger rate was high, the intra night variability was
low.




Modeling The Atmosphere: MODTRAN

- By Increasing the wind speed parameter in the
standard desert model of MODTRAN, dust (sand) in

the region 0-3 km is increased.

This parameter is tuned to the cosmic-ray trigger rate
of the real data and simulations are compared with

real data.
2006 so MODTRAN 4 was standard



Comparing With Real Data

Simulated Cosmic Ray Data with Fit
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The cosmic-ray trigger simulations therefore
suggest 3 classes of low-level dust of increasing
density. Image parameters in good agreement.



Comparing With Real Data

Simulated Cosmic Ray Data with Fit Real Cosmic Ray Data + Simulated Fit
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The cosmic-ray trigger simulations therefore
suggest 3 classes of low-level dust of increasing
density. Image parameters in good agreement.



Comparing With Real Data

The Ceilometer and

| BackScatter-Profile |
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Geometric reconstruction of
the shower allows you to
distinguish:

Dust

Place on ground where
primary gamma-ray would
have intersected, combined
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allows energy estimation

The reconstructed depth
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maximum number of
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Using D, .., to probe atmosphere

Given the Ceilometer has a finite sensitivity and range
its possible high-level aerosols may also be
contributing to the reduced trigger rate. However these
would affect the mean value of D,

By comparing D, ., between simulation and real data,
we can check for any signs of high-level aerosols in
our data.



gamma-ray simulations
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Here <D, ,,> from simulation for various atmospheres
(those selected by trigger rate (i.e. low-level aerosols
only) are solid circles. Results agree well with our
assumptions at 20 (shown) and 40 degrees from
Zenith.



gamma-ray simulations
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Corrected Flux Comparison
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Here we see the uncorrected (white) and
corrected (pink) integral flux (above 200 GeV)
seen from a variable source (PKS 2155-304)




Spectrum Comparison
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Without correction spectra of data subsets differ
significantly in both normalization and slope, after
correction they agree well. Corrected flux also
correlated with measured X-ray flux.



Constant Flux Source Check

Corrected “dusty” Crab data
22—
= ‘normal” Crab data
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technique results in a better fit

proof of principle




Problems

The old Ceilometer:
- Range of 7km (doesn’ t cover Dmax)

- Wrong wavelength (905nm)
Reliance on cosmic-ray simulations:
- 15% systematic error in flux
. Significant computing expense.
Newer lidars:
- Direct extraction of transmission at 355 nm.

Dust isn’t dust
- Biomass burning

Old version of MODTRAN (4)



Conclusions

- H.E.S.S. operates (and has operated) many
pieces of atmospheric monitoring equipment on
site.

- These are routinely used in data quality
checking.

- A method for correcting for the presence of low-
level dust is presented, as is a novel method to
use telescope data to isolate aerosol
populations.



