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More Recent H.E.S.S. Related Work 

•  Radiometers – See Michael Daniel’s Talk 
•  Lidar – See George Vasileiadis Talk 
•  Aerosols at H.E.S.S. site – P Ristori  

•  and many others … 



•  The Problems 
•  Equipment in Namibia 
•  Relative Methods of Correction 
•  In Search of Absolute Correction 

•  Active Atmospheric Correction 
•  Short Comings of This Method 

•  Conclusions & Future Work 
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•  High Level Aerosols (e.g. clouds) which can occur 
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image shape etc.  

•  Low Level Aerosols (near to ground level) which act as 
a filter, lowering the Cherenkov yield.  
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Ceilometer 

•  Commercial 
Ceilometer with 7km 
range operating at 
905nm operated at 
H.E.S.S. site from 
2002-2007. 

•  Co-pointed with 
telescopes 

•  Used routinely by 
shift crew to check 
atmospheric quality.  

•  Could be set to look 
at next observing 
position to check 
clarity elsewhere. 
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•  Throw Data Away 
•  Use parts of runs unaffected by bad weather, 

e.g. fleeting clouds.  
•  Scale by differences in background cosmic-ray 

distribution (e.g. image amplitude or size), 
relative to a “clear” night, e.g. throughput ().   

•  Scale by differences in changing optical 
properties of starlight derived from optical 
telescopes relative to a “clear” night.  



Methods of atmospheric correction (2) 

•  Utilise ceilometer to locate aerosol 
populations, model atmosphere, apply to 
cosmic-ray and gamma-ray simulation 
database, and compare telescope simulation 
to real data, varying atmospheric model (within 
limits) until simulations & real data agree. 
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Apply 
atmospheric 
model to 
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simulations 

Produce gamma-
ray lookup tables 

Apply to the 
Data 

Significant 
Computing 
Expense 



Lookup Tables 

•  Energy (Core Position, Image Brightness, Zenith 
Angle) 

•  Effective Area(Reconstructed Energy, Zenith Angle, 
Offset) 

•  Mean Scaled Length (Core Position, Image Brightness, 
Zenith Angle) 



Lookup Tables 
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Outcomes 

•  By lowering Cherenkov yield from a given 
shower, the dust will have 2 effects: 
•  Decreasing the efficiency of the telescope for 

detecting gamma-rays, particularly those of lower 
energy. 

•  Allow miscalculation of the energy of a given event. 
For the worst cases seen at the H.E.S.S. site can 
be out by almost 50%.  



Changing Effective Area 

Low level aerosols effect both the triggering and the energy 
reconstruction, as shown here in terms of effective area - true 
energy (lhs) and reconstructed energy (centre and rhs) 



Changing Energy Resolution 

•  If no correction is attempted with increasing low level 
aerosols (“dust”) the Cherenkov yield from an event of 
given energy and core location will be less.  

•  Without correction this will lead to a bias in the 
reconstructed energy 

•  This can be thought of as a systematic offset or bias in 
the energy resolution  
 ((ERECO-ETRUE)/ETRUE). 
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Comparing With Real Data 

•  During August each year several nights of 
observations are lost due to low-level dust of the kind 
described.  

•  For example in 2004, a multi-wavelength campaign 
was running on PKS2155-304 and almost 70% (60 hrs) 
of the data was affected.  

•  Although the inter night variability in cosmic-ray 
trigger rate was high, the intra night variability was 
low.  



Modeling The Atmosphere: MODTRAN 

•  By increasing the wind speed parameter in the 
standard desert model of MODTRAN, dust (sand) in 
the region 0-3 km is increased.  

•  This parameter is tuned to the cosmic-ray trigger rate 
of the real data and simulations are compared with 
real data.  

•  2006 so MODTRAN 4 was standard 
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Comparing With Real Data 

The Ceilometer and 
Transmissometer also 
supported three 
classes of atmospheric 
behavior. However 
this Ceilometer had a 
limited altitude range 
(7km), and so another 
method for deriving 
the prescience of 
aerosols was 
developed.  
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Using Dmax to probe atmosphere 

•  Given the Ceilometer has a finite sensitivity and range 
its possible high-level aerosols may also be 
contributing to the reduced trigger rate. However these 
would affect the mean value of Dmax 

 
•  By comparing Dmax between simulation and real data, 

we can check for any signs of high-level aerosols in 
our data. 



Here <Dmax> from simulation for various atmospheres 
(those selected by trigger rate (i.e. low-level aerosols 
only) are solid circles. Results agree well with our 
assumptions at 20 (shown) and 40 degrees from 
Zenith. 
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Corrected Flux Comparison 

Here we see the uncorrected (white) and 
corrected (pink) integral flux (above 200 GeV) 
seen from a variable source (PKS 2155-304) 



Spectrum Comparison 

Without correction spectra of data subsets differ 
significantly in both normalization and slope, after 
correction they agree well. Corrected flux also 
correlated with measured X-ray flux. 



Constant Flux Source Check 



Problems 

•  The old Ceilometer: 
•  Range of 7km (doesn’t cover Dmax) 
•  Wrong wavelength (905nm) 

•  Reliance on cosmic-ray simulations: 
•  15% systematic error in flux  
•  Significant computing expense. 

•  Newer lidars:  
•  Direct extraction of transmission at 355 nm. 

•  Dust isn’t dust 
•  Biomass burning  

•  Old version of MODTRAN (4) 
  



Conclusions 

•  H.E.S.S. operates (and has operated) many 
pieces of atmospheric monitoring equipment on 
site.  

•  These are routinely used in data quality 
checking. 

•  A method for correcting for the presence of low-
level dust is presented, as is a novel method to 
use telescope data to isolate aerosol 
populations.  


