Multiple scattering effects of aerosols on light in the atmosphere

Joshua Colombi and Karim Louedec

June 2013

1

Scattering

- No absorption of fluorescence light for UV light from air showers
 >Attenuation is just scattering out of the view of a detector.
- Photons can also be scattered back into the view of the detector.
 =>Over-estimation of energy
- Aerosols (their concentration and size) have an effect

 Two well known parameterisations used to model the percentage of multiply scattered light at fluorescence detectors.
 – Roberts^[1] and Pekala^[2]

Do NOT account for size of aerosols

 Aerosol size changes significantly multiply scattered light collected at fluorescence detectors and should be taken into account.

[1] M D Roberts J.Phys. G: Nucl. Part. Phys. 31 (2005) 1291-1301

[2] J. Pekala, P. Homola, B. Wilczynska, H. Wilczynski, Nucl. Instruments and Methods in Phys. Research A **605** (2009) 388 – 398

Outline

- Theory of scattering and simulation method.
- Global view :
 - General distribution of scattered photons in different atmospheres.
 - Indirect light detected at detectors across all space.
- Fluorescence detectors :
 - Study for isotropic sources.
 - Study for air showers.

Outline

- Theory of scattering and simulation method.
- Global view :
 - General distribution of scattered photons in different atmospheres.
 - Indirect light detected at detectors across all space.
- Fluorescence detectors :
 - Study for isotropic sources.
 - Study for air showers.

Distribution of scatterers in the atmosphere

-> Attenuation length = Density

Molecules:

$$\Lambda_{
m mol}(h_{
m agl}) = \Lambda_{
m mol}^0 \exp\left(rac{h_{
m agl}+1412}{h_{
m mol}^0}
ight)$$

Aerosols:

$$\Lambda_{aer}(h_{agl}) = \Lambda_{aer}^{0} \exp\left(\frac{\dot{h}_{agl}}{h_{aer}^{0}}\right)$$

$$\Lambda_{mol}^{0} = 14.2 \text{ km}$$

$$\Lambda_{mol}^{0} = 8.0 \text{ km}$$

$$\Lambda_{mol}^{0} = 8.0 \text{ km}$$

$$\Lambda_{aer}^{0} = 1.5 \text{ km}$$

Is it scattered into or out of the view of the detector?

=> SCATTERING PHASE FUNCTION

The Scattering Phase Function

- A normalised probability density function.
 - The integral over a solid angle is the probability of a photon being scattered within this range.

8

 $\iint P(\psi) \sin \psi \, \mathrm{d}\psi \mathrm{d}\phi$

Molecules vs. Aerosols

Molecules

Particles smaller than the wavelength of light
 The Rayleigh Scattering Phase Function

Aerosols

- Particles larger than or comparable to the wavelength of light.
- More anisotropic scattering than molecules.
- Mie theory
 - Infinite series => Long computation times.
 - \Rightarrow Parameterisation used

Double Henyey-Greenstein function:

$$P_{\text{aer}}(\psi|g,f) = \frac{1-g^2}{4\pi} \left[\frac{1}{(1+g^2-2g\cos\psi)^{\frac{3}{2}}} + f\left(\frac{3\cos^2\psi-1}{2(1+g^2)^{\frac{3}{2}}}\right) \right]$$

K. Louedec and M. Urban, Applied Optics 51 (2012) 7842–7852

Simulation tracks every photon in space -> The most accurate way!

Outline

- Theory of scattering and simulation method.
- Global view :
 - General distribution of scattered photons in different atmospheres.
 - Indirect light detected at detectors across all space.
- Fluorescence detectors :
 - Study for isotropic sources.
 - Study for air showers.

Evolution of distribution of scattered photons with time

(b) D = 10 km

(c) D = 20 km

 $\Lambda_{aer}^{0} = 25.0 \text{km} \text{ h}_{aer}^{0} = 1.5 \text{km}$

-> Difference in density at different heights

Effect of changing the scattering phase function

(a) g = 0.3

(b) g = 0.6

(c) g = 0.9

- Unrealistic density of aerosols.
- Accumulation of scattered photons before direct photons for high g.
- => Scattered photons have high component of velocity along direct photon motion.

Relative effects of aerosols and molecules

- Higher density of molecules => molecules dominate.
 - Does NOT mean aerosols can be overlooked

 $g=0.6 \Lambda_{aer}^{0} = 25.0 \text{ km} h_{aer}^{0} = 1.5 \text{ km}$

Outline

- Theory of scattering and simulation method.
- Global view :
 - General distribution of scattered photons in different atmospheres.
 - Indirect light detected at detectors across all space.
- Fluorescence detectors :
 - Study for isotropic sources.
 - Study for air showers.

Presentation of results

- Ratio N_{indirect}/N_{direct}
- A histogram bin represents the ratio of indirect photons detected within a given integration time t_{det}.

Short integration time – t_{det} = 100 ns

- High g => more indirect photons
- Scattering phase function more important than relative density of scatterers

 $\Lambda_{aer}^{0} = 25.0 \text{ km} \text{ h}_{aer}^{0} = 1.5 \text{ km}$

Longer integration time $-t_{det} = 1000$ ns

- No more indirect photons detected for high g.
- Many more indirect photons detected for molecules => molecules dominate.

 $\Lambda_{aer}^{0} = 25.0 \text{ km} \text{ h}_{aer}^{0} = 1.5 \text{ km}$

Relative effects of aerosols and molecules

Outline

- Theory of scattering and simulation method.
- Global view :
 - General distribution of scattered photons in different atmospheres.
 - Indirect light detected at detectors across all space.
- Fluorescence detectors :
 - Study for isotropic sources.
 - Study for air showers.

Integration angle - ζ

Integration angle: ζ

Ш

່ຕ

Δθ

• $\zeta = a\cos(\cos(\Delta\theta)\cos(\Delta\varphi))$

24

 ζ = 1.5[°] TYPICALLY.

defector
 Relation between indirect light signal and integration angle ζ is of interest for fluorescence detectors.

 It is over a specified ζ range that light is accounted for.

1)a) Changing the position in space of the isotropic source

Distance to detector = 1 km Inclination angle = 3°

[%]

 $\Lambda^{0}_{aer} = 25.0 \text{km} \text{ h}^{0}_{aer}$

= 1.5km

-> Greater aerosol size = > Greater signal

30 [%]

25

ect light [%]

 $\Lambda_{aer}^{0} = 25.0 \text{ km} \text{ h}_{aer}^{0} = 1.5 \text{ km}$

1)b) Changing the position in space of the isotropic source

Distance to detector = 30 km, Inclination angle = 3^e

- Increasing distance to detector increases indirect signal and decreases direct signal.
 - Increasing distance to detector increases effect of aerosol size

=> High forward scattering peak means aerosol scattered photons are likely to be

otons [%

Aer: a = 0.9

 $\Delta er \cdot a = 0.8$

1)c) Changing the position in space of the isotropic source

27

 $\Lambda_{aer}^{0} = 25.0 \text{ km} \text{ h}_{aer}^{0} = 1.5 \text{ km}$

- Increasing inclination angle makes halo wider and decreases percentage of indirect light
- Photons are scattered nearer to detector due to incresed denisty of scatterers near to detecto

1)d)Changing the position in space of the isotropic source

2) The effect of increasing integration time

More molecularly scattered photons are detected
 => High forward scattering peak less important at higher time

29

g= 0.6 Λ_{aer}^{0} = 25.0km h⁰_{aer} = 1.5km

2) The effect of increasing integration time

3) Effect of changing aerosol density (Λ^{0}_{aer})

 Aerosol size should be considered with the same importance as aerosol density.

Distance to detector = 15 km Inclination angle = 15° g= 0.9 , h_{aer}^{0} = 1.5 km, Λ_{aer}^{0} = 25.0 km

Outline

- Theory of scattering and simulation method.
- Global view :
 - General distribution of scattered photons in different atmospheres.
 - Indirect light detected at detectors across all space.

• Fluorescence detectors :

- Study for isotropic sources.
- Study for air showers.

Simulation approximations

- 'Pixel' left active for 100 ns
- Direct light calculated analytically
 - Indirect light with simulation.

Approximation => 5000 ns after direct light from a source has been detected source no longer has an effect

Validity of approximation

 Simulation ran for 15000 ns

 For smaller integration angles the majority of indirect photons arrive from sources that have had their direct light recently detected.

 g = 0.3 worst case scenario

Distance to detector = 15 km, Inclination angle = 15° , g= 0.3, Λ^{0}_{aer} = 25.0km, h^{0}_{aer} = 1.5km

Comparison of air shower and isotropic source (t_{det} = 100 ns)

Distance to detector = 5 km, Inclination angle = 30° , g= 0.6, Λ_{aer}^{0} = 25.0km, h_{aer}^{0} = 1.5km

Results for different geometries (Preliminary)

Distance to detector = 30 km, Inclination angle = 3° ,

Distance to detector = 30 km, Inclination angle = 3° ,

Simulations continue to run.

36

Conclusion

- Even in lower proportions, the high forward scattering peak of the aerosol phase function means aerosols effect greatly the percentage of signal due to indirect light at fluorescence detectors.
- Considering aerosol size is of equal importance as considering aerosol density .
- Multiply scattered light from air showers has an even greater effect than from isotropic sources (changing aerosol size from g=0.3 to g=0.9 can change percentage of signal due to indirect light by a factor of 2!)

=> New parameterisation with aerosol size required.

Thank you for listening.

l invite any questions.

Back-up Slides

Effect of the scattering phase function $-t_{det} = 100 \text{ ns}$

- High g high percentage of signal due to indirect light.
 - Increasing g makes halo narrower
- Aerosol scattering events are detected from many distances
 => Even in a much lower density, aerosols dominate effects

40

The effect of molecules and aerosols being simultaneously present

Molecules decrease the effect aerosols have on the amount of indirect
 140
 140
 Distance = 5 km

being simultaneously present

····· Distance = 5 km

Percentage

- Error is greater for larger distances => molecules attenuate indirect photons caused by aerosol scattering that would have been detected.
- Molecules decrease overall indirect light signal!
 - =>Scatterers do not automatically increase the amount of indirect light detected!

The Double-Henyey Greenstein Function

• f – backward

scattering parameter

- Much less influence on phase function.
- ⇒ Effects on detected light negligible.

f = 0.4 used

Generating polar scattering angles from scattering phase functions

44

$$\begin{cases} \mathscr{P}_{aer}(\psi) = 2\pi P_{aer}(\psi) \sin \psi \\ \mathscr{P}_{mol}(\psi) = 2\pi P_{mol}(\psi) \sin \psi \end{cases}$$

Presentation of results

Molecules only Λ°_{mol} = 14.2 km h°_{mol} = 8.0 km

Simulation Method

3) Effect of changing aerosol density (Λ^{0}_{aer})

• Changing Λ^{0}_{aer} changes indirect signal proportionally

Distance to detector = 15 km Inclination angle = 15° g = 0.9 , h_{aer}° = 1.5 km, Λ_{aer}° = 25.0 km