

Elve observation with the Fluorescence Detectors of the Pierre Auger Observatory

AURELIO S. TONACHINI¹ FOR THE PIERRE AUGER COLLABORATION²

(Full author list: http://www.auger.org/archive/authors_2012_06.html)

¹Università degli Studi di Torino and INFN Sezione di Torino, ITALY ²Observatorio Pierre Auger, Malargüe, Argentina

tonachini@to.infn.it

Transient luminous events

Electrodynamic coupling between electromagnetic fields produced by lightning discharges and the lower ionosphere.

Several observed phenomena, including various transient luminous events, such as Sprites and Elves.

First observations of elves

First clear observation by using a high speed photometer pointed at altitudes above those of sprites

H. Fukunishi at al., Geophys. Res. Lett., 1996, 23: 2157-2160 ←

Fly's Eye and PIPER

They adopted linear arrays of photometers with a resolution of ~40 µs \rightarrow study of the lateral expansion.

Data from space

ISUAL/Formosat-2 mission collected TLE data for three years.

ISUAL: observations from satellite

Elves recorded from June 2004 to July 2007:

Number	Land	Coast	Ocean
5434	9%	32%	59%

Elve rate strongly dependent on sea temperature

The Pierre Auger Observatory

Ultra high energy cosmic ray observatory in the southern hemisphere

CR detection with 2 techniques (hybrid):

- water Cherenkov array 1600 tanks, 3000 km²
- **27 Fluorescence detectors** *overlooking the array*

Located at 1400 m a.s.l. Dry zone with low pollution Infrustructures

Fluorescence Detectors

The Fluorescence Detector (FD) comprises *four* observation sites, each with six independent telescopes (FOV of 30° × 30°)

FD camera: 22 × 20 hexagonal PMTs

Wavelength range: 300 – 420 nm

Time resolution: 100 ns

Fluorescence Detectors - inside

FD Performances

Uptime fraction

Main contributions to deadtime:

- sun and nearly full moon
- poor weather

Average uptime: ~13%

Constant monitoring

FD is continuously monitored by shifters during data acquisition.

- Background properties
- Weather conditions
- Trigger rates

Excitation of the lower atmosphere

Elves are due to the heating of the electrons near the low ionosphere boundary by EMPs launched during *cloud-to-ground* discharges.

Collision of electrons with N₂ and O₂ \rightarrow prompt fluorescence light emission

Subsequent light emission by chemiluminescence

Excitation of the lower atmosphere

First serendipitous observation

The tail of elves

Events observed simultaneously by different FD telescopes → At very large distance from the Observatory

Front propagation reconstruction

Signal time evolution described by the intersection of a **sphere** (the D region) with **ellipsoids** with foci *O* and *S*.

First light when the ellipsoid is *tangent* to the sphere.

Strong constraints on the location of the EMP source.

3D reconstruction

Fluorescence Detector Trigger

Lightning Rejection

It is made of 5 different cuts

The first three ones remove accidental noise (e.g. uncorrelated pulses)

These cuts were removing elves too!

Examples

Elve trigger step by step

Find the FIRST PIXEL and define the PULSE START TIME

- Check PIXELS on the same COLUMN
- at least 3 pixels before AND 3 after the central one
- 80% of the pixels must show an increasing pulse time
- Check PIXELS on the same ROW

3

- at least 3 pixels before OR 3 after the central one
- 80% of the pixels must show an increasing pulse time
- Check signal amplitude for each pixel
 at least ONE pixel with > 50 ADC counts

Trigger applied to minimum bias events (2008-2011)

FD site	Elves	Reconstructable
Los Leones	21	17
Los Morados	6	3
Loma Amarilla	12	9
Coihueco	19	10
TOTAL	58	39

18 elves out of 58 have their center outside the triggered FD bay

Event distribution

azimuth

Distance of observed events

Events detected in March-April 2013

FD site	Elves	Reconstructed	Stereo
Los Leones	41	29	26
Los Morados	8	2	7
Loma Amarilla	32	26	13
Coihueco	52	40	22

Comparison with lightning data

Most impressive match: GPS 1046828190, 900 km away, on Atlantic Ocean match with WWLLN within 15 km

On this, we know the lightning strike current, 160 kA*

Measuring the D Layer altitude with elves

Precise information about the lightning location combined with Auger measurements allow to use elves as probes for studying the low ionosphere. D Region

h'

h

The front propagation reconstruction depends on two parameters:

P'

- the source elevation angle ε
- the D layer altitude **h**

The distribution of the **D** layer altitudes has mean value at ~ 86 km and RMS of 9 km

S'

Measuring the pulse duration

The FWHM of the pulse in the first pixel is related to either the size of the initial pulse, or the thickness of the light emitting layer. 6 -12 µs correspond to ~ 2-4 km.

About **20%** of the detected elves show two different pulses.

Gallery

I. Lat. all lines

Gallery

Conclusions

A dedicated trigger for recording elves with the FD of the Pierre Auger Observatory has been recently implemented

133 events detected in 2 months

The FD records **2D images** of elves with a time resolution **50 times better than previous observations**

Many events recorded in stereo

thank you!