Improvements to the Infrared Cloud Detection System at the Pierre Auger Observatory

Trent Grubb

University of Adelaide trent.grubb@student.adelaide.edu.au

AtmoHEAD June 2013 CEA Saclay

12 June 2013

Overview

- Background
- Possible areas of improvement
 - \rightarrow Automation & Reliability
 - → Data Quality
 - → Image Artefacts
 - → Image Presentation
 - → Data effectiveness
 - → Cloud Position Analysis
- Potential Extra Applications

Background: Pierre Auger Observatory

- Near Malargue, Argentina 69W, 35S, 1400m above sea level.
- Measures Arrival directions and energies of high energy particle that interact with our atmosphere.
- 4 Nitrogen Fluorescence detector (FD) telescope sites each one covering a $180^{\circ} \times 30^{\circ}$ view over the 1600 tank surface detector array.

Background: Clouds and the Observatory

- Clouds Scatter Nitrogen
 Fluorescence light produced by cosmic ray interactions in the atmosphere producing peaks and troughs in the air shower profiles measured.
- Attenuation of fluorescence light by cloud between fluorescence detector and shower causes troughs.
- Peaks caused by intense
 Cherenkov beam directed along
 the axis of the shower being
 scattered sideways towards the
 fluorescence detector.

Figure: FD cosmic ray air shower profile and cloud mask.

Background: Cloud Camera System

Figure: Pan & Tilt motor system with infrared camera attached inside a housing.

Cloud Camera Data Analysis

→ Reads in raw image files and produces Fluorescence Detector cloud masks.

Cloud Image Capture Process

- → Control Pan & tilt motor system and infrared camera.
- → Captures images of Fluorescence Detector field of view every 5 minutes.
- → Produces full sky images for weather observations.

Automation & Reliability: Software upgrade

 Labview: Graphical based programming language created by National Instruments.

- We are using Labview in conjunction with a NI PCI-6023E card that contains:
 - ightarrow 8 digital lines which we use to control power to the pan & tilt and camera.
 - $\rightarrow\,$ 24bit counters which we use to control the amount of movement in both pan and tilt.
 - \to Digital to analogue converters which we use to measure potentiometers which give us the cameras pointing direction.

Automation & Reliability: Labview GUI

- Labview has allowed for development of a Graphical User Interface (GUI).
- With the GUI we are able to:
 - → Fully control all settings.
 - → Configure the system into a number of different operational states.
 - \rightarrow Save configurations of the system to file for automatic loading.

Automation & Reliability: Image Processing

- Labview has also allowed for more complex image analysis tasks.
- Real time Canny edge detection filtering made it possible to calibrate the cameras pointing direction via the moon.
- Calibration corrects for the non level mounting of the system, the systems knowledge of true east & horizon and the relationship between the pan & tilts angular movement and there voltage readings.

Figure: Canny edge detection applied to clear sky, cloudy and moon images.

Data Quality: Data Quality

- Data Quality has 3 aspects:
 - → Artefact removal,
 - ightarrow Full sky image presentation and
 - → Effectiveness of the data in terms of it being used in the post processing cloud detection phase.

Data Quality: Current System Limitations

- Ambient temperature dependent image artefact at Coihueco site.
- New cameras needed to improve image quality.

Figure: Old Cloud camera system Fluorescence Detector field of view images.

Data Quality: New Infrared cameras

Gobi-384 radiometric microbolometer array infrared camera:

- $8-14\mu m$ spectral response.
- 384 by 288 pixel array.
- 50° horizontal field of view.
- 50mK temperature resolution.

Data Quality: Full Sky Images

 Radiometric nature of the new cameras also makes it easier to distinguish the difference between cloud and clear sky.

Figure: New Cloud camera system full sky image (not fully calibrated).

Figure: Old Cloud camera system full sky image.

Data Quality: Data effectiveness

• Results of better organisation of the system:

- \rightarrow 50% reduction in the size of data produced while outputting 40% more data via compression and saving of data in Jpeg2000 format.
- ightarrow Automation of data exportation to the secure storage system at CC-IN2P3 Lyon.

Cloud Detection Processes: Cloud Detection Processes

- Cameras signal is highly dependent on atmospheric water vapour content due to atmospheric window band-pass.
- Current system can falsely identify high levels of water vapour content as cloud.
- We are currently investigating simulating the cameras response using Atmospheric Radiation Transfer routines and Atmospheric profile data from the Global Data Assimilation System (GDAS).
- This could help simplify the amount of image processes required to determine cloud locations.

Potential Extra Applications

• Investigate the possibility of determining other atmospheric properties that could be related to the intensity of the radiometric signals.

 Investigate the cameras sensitivity to different cloud and aerosol conditions.

Thank You

References

Karim Louedec (2011)

Atmospheric Monitoring at the Pierre Auger Observatory Status and Update 32ND INTERNATIONAL COSMIC RAY CONFERENCE 12(3), 45 – 678.

The Pierre Auger Collaboration (2009)

Fluorescence Detector of the Pierre Auger Observatory *Nucl.Instrum.Meth* A620, 227-25.

Xenics

Xenics Infrared Solutions

www.xenics.com.