

Measurement of the spin and parity of the new boson discovered in ATLAS experiment at the LHC

Outline

- ATLAS detector at the LHC
- Discovery of the new boson
- Spin models and options
- Current spin measurements
- Beyond the Standard Model
- Summary and Outlook

ATLAS detector overview

The Inner Detector provides around 3 pixel, 8 SCT and 30 TRT measurements per charged track at $\eta = 0$. Coverage: $|\eta|$ < 2.5 (2.0 for TRT) Resolution goal: $\sigma_{pT} / p_T =$ 0.05% $p_T \oplus 1\%$

Muon spectrometer: high precision tracking and trigger chambers. |n| coverage up to 2.7. Magnetic field produced by 3x8 air-core toroids. EM Calorimeter: ($|\eta| < 4.9$) Pb-LAr accordion structure provides e/ γ trigger, identification, measurement σ/E ~10%VE

Hadronic (Tile): provides trigger, jet measurement, E_T^{miss} $\sigma/E \sim 50\% VE \oplus 0.03$. ($|\eta| < 1.7$)

Data taking in 2011 and 2012

		٧S	Delivered (fb ⁻¹)	Recorded (fb ⁻¹)
рр	2011	7 TeV	5.61	5.25
рр	2012	8 TeV	23.3	21.7

- Higgs mechanism: most probable mechanism for the electroweak symmetry breaking. Used both in the Standard Model and theories beyond.
- In the Standard Model, the vector bosons and the fermions acquire mass via coupling to the Higgs field.
- Physical manifestation of the Higgs field in the Standard Model: scalar Higgs boson.
- Theories beyond the Standard Model often require presence of several Higgs bosons.
- Presently, the Higgs boson is the missing part of the Standard Model. Higgs-like resonance observed. No evidence for multiple Higgses is found so far.

LEP: m_H>114.4 GeV.

Tevatron: exclusion of the 147 GeV < m_H< 179 GeV region.

Indirect limits come from the precision measurements of electroweak observables.

arXiv::1203.3774

Standard Model Higgs searches at LHC

page 6

LHC Higgs Cross-Section Working group

Discovery of the new resonance in ATLAS

Considered search channels

page 8

Higgs Boson	1 Subsequent Sub-Channels			Ref.	
Decay	Decay		[fp_1]		
		2011 $\sqrt{s} = 7 \text{ TeV}$			
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	4.6	[10]	
		10 categories	19	[0]	
$H \rightarrow \gamma\gamma$	_	$\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \mathrm{conversion}\} \oplus \{2\text{-jet VBF}\}$	4.0	[9]	
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	4.6		
$H \rightarrow \pi\pi$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[11]	
$H \rightarrow \mathcal{U}$	$ au_{ ext{had}} au_{ ext{had}}$	{1-jet, 2-jet}	4.6		
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6		
$VH \rightarrow Vbb$	$W \rightarrow \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[12]	
	$Z \rightarrow \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7		
		2012 $\sqrt{s} = 8 \text{ TeV}$			
$H \rightarrow ZZ^{(*)}$	4 <i>ℓ</i>	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	20.7	[10]	"Moriond FW"
$H \rightarrow \alpha \alpha$		14 categories	20.7	[0]	
$\Pi \rightarrow \gamma \gamma$	_	${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2\text{-jet VBF}} \oplus {\ell\text{-tag, } E_{\text{T}}^{\text{miss}}\text{-tag, } 2\text{-jet VH}$	} 20.7	[9]	data set.
$H \rightarrow WW^{(*)}$	evμv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}\}$	13	[13]	1
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13		
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[11]	"Council week"
$\Pi \rightarrow \Pi$	$ au_{ ext{had}} au_{ ext{had}}$	{1-jet, 2-jet}	13		
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13		data set.
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[12]	
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13		J

- Current status of analysis in the individual channels where the searches were performed. •
- Final result is the combination of all considered modes. •
- Search performed in the range $m_{H} = 110 600$ GeV. •

Discovery of the new resonance

- The initial observation of the new resonance by ATLAS was done in the combination of channels with 4.8 fb⁻¹ at √s = 7 TeV and 5.8 fb⁻¹ at √s = 8 TeV.
 H→ZZ^(*)→4I, H→γγ, H→WW→lvlv, H→bb⁻ and H→τ⁺τ⁻.
- Excess with local (global) significance of 5.9σ (5.1σ) driven by the ZZ^(*), $\gamma\gamma$ and WW decays. M_H = 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
 - Confirmed with subsequent study of 4.8 fb⁻¹ at 7 TeV + 13 fb⁻¹ at 8 TeV

ATLAS-CONF-2013-013

Current status of the new resonance

- In February-March 2013, the in ZZ and γγ results were updated with larger data sets
 - Up to 20.7 fb⁻¹ at 8 TeV + 4.6 fb⁻¹ at 7 TeV.
- Individual local significance of excess reached 7.4 ($\gamma\gamma$) and 6.8 (ZZ) standard deviations.

ATLAS-CONF-2013-014

Current status of the new resonance

- Combined mass measurement from $H \rightarrow ZZ^{(*)} \rightarrow 4I$, $H \rightarrow \gamma\gamma$ channels: m_H=125.5 ± 0.2 (stat) ^{+ 0.5} _{-0.6} (sys) GeV.
- The mass difference between two channels: $\Delta m_{\rm H} = 2.3 + 0.6_{-0.7}$ (stat) ± 0.6 (sys) GeV.
 - Corresponds to probability of 1.5% (2.4 standard deviations).

Spin and parity models of the new resonance

- The production of a new resonance with the mass around 126 GeV is observed in proton-proton collisions.
- Can we attribute this resonance to the Standard Model Higgs boson? The Standard Model Higgs:
 - Neutral scalar.
 - CP-even: $J^{CP}=0^{++}$.
 - Predicted couplings to the fermions and gauge bosons.
 - Self-couplings.
- The new resonance is a neutral boson: it decays to pairs of gauge bosons (and fermions?) with total charge 0.
 - Integer spin.
 - Parity is to be defined.

- What do we know about the spin and parity (J^P) of the new resonance so far:
 - Integer spin. Currently considering 0, 1 or 2.
- Spin-1 is disfavored due to the observation of the $\gamma\gamma$ decay (Landau-Yang theorem). However there are loopholes.
- To associate this particle to a particular model, one needs to measure the spin and parity in the experiment without theoretical prejudice.
- Need to study J=0,1,2 cases to exclude all hypotheses alternative to the J^P=0⁺.

- Summary of spin possibilities given the observed decays.
- In principle, the observation of $\gamma\gamma$ disfavors the spin-1 hypothesis.
- The observation of the two-fermion decays will disfavor the spin-2 hypothesis.
- In both cases the loopholes exist.

	Spin-0	Spin-1	Spin-2	Observed
γγ	YES	NO	YES	YES
WW/ZZ	YES	YES	YES	YES
Fermions (bb <i>,</i> ττ)	YES	YES	NO	YES?

Present spin measurements in ATLAS (Council week 2012 and Moriond 2013)

Measurements of Spin and Parity

- Assume possible production mechanisms which can be responsible for the • observation in WW, ZZ and yy:
 - Spin-0: gluon-gluon Fusion.
 - Spin-1: qqbar production.
 - Spin-2: gluon-gluon Fusion and qqbar production.

- Measurement of properties: deduce spin and parity from • measured distributions of kinematic observables.
- **Observables:** ٠
 - Angular distributions of decay products in the rest frame of the resonance.
 - For some channels: invariant masses of the gauge bosons.

Spin-2 models

- Which Spin-2 models makes sense?
 - The interaction of a spin-two particle with electroweak gauge bosons is described by at least 10 independent tensor couplings.
 - Production mechanism can also vary: gg, qq.
- General idea:
 - Given the number of possibilities, we cannot exclude 'generic' spin-2.
 - We should start with the model with minimal couplings and exclude it in favor of the SM hypothesis, which is relatively well defined.
 - If during this study we observe something 'funny' have a deeper look in spin-2 models.
 - It is possible that both ggF and qq production mechanisms contribute to the spin-2 state. The possible mixtures should thus be studied.

Present spin studies in ATLAS

- In 2012 and 2013 ATLAS has presented two major studies of the spin and parity of the Higgs-like resonance around 126 GeV.
- Decays: H->ZZ->4I and H->γγ.
- Spin and parity hypotheses considered: 0⁺, 0⁻, 1⁺, 1⁻, graviton-like tensor with minimal couplings 2_m⁺, pseudo-tensor 2⁻.
 - 2_m^+ and 2^- production. gg->X: g₁=1; qq->X: ρ_{12} =1.
 - $2_{m}^{+} \text{decay } g_{1} = g_{5} = 1.$
 - $2^{-} \text{ decay: } g_8 = g_9 = 1.$
- The choice of coupling constants follows the formalism described in the JHU papers:
 - Y. Gao, et al., "Spin determination of single-produced resonances at hadron colliders", Phys. Rev. D81 (2010) 075022, arXiv:1001.3396 [hep-ph]
 - S. Bolognesi, et al., "On the spin and parity of a single-produced resonance at the LHC", Phys. Rev. D86 (2012) 21.

Two photon decay channel

13 fb⁻¹ at 8 TeV

Two-photon decay channel: Study based on the single production angle: $|\cos \theta^*|$.

Considered models: 0⁺ and 2⁺_m (both qqbar and ggF production mechanisms).

No categorization: 123.8 GeV $< m_{yy} < 128.6$ GeV

- Left: fitted distribution of $|\cos \theta^*|$ for the SM Higgs boson signal plus background hypothesis, for the data, the background and the signal.
- Right: background-subtracted data distributions, profiled with a fit where the 0⁺/2⁺_m ratio is free.

H->γγ 13 fb⁻¹ at 8 TeV

Expected p_0 -value for 2^+_m (100% ggF) : 3.4% (1.8 σ)

Observed p_0 -value for 0⁺ hypothesis: 29% (0.55 σ).

For 2^{+}_{m} (100% ggF): 8.4% (1.4 σ).

Data show slight preference for $J^{P}=0^{+}$.

The H->ZZ->4l decay is sensitive to Spin and CP nature of the underlying resonance. In the case of low mass (<190 GeV) the observables are 5 production and decay angles and reconstructed masses of the intermediate Z's: m_{12} and m_{34} .

Test: 0^+ , 0^- , 1^+ , 1^- , 2_m^+ (graviton –like tensor with min. couplings), 2^- .

Sensitivity to all Spin-parity combinations.

Production and decay angles fully characterizing orientation of the decay chain:

 Θ^* of the first Z-boson.

 Φ and Φ_1 between the decay planes defined in the Higgs rest frame.

 Θ_1 and Θ_2 of the negative leptons defined in the corresponding Z rest frame.

Examples of signal distributions for various spin and parity hypotheses at the generator level. (JHU 2.0.2 Leading Order MC generator)

AT LAS

ATL-CONF-2013-013

Four lepton decay channel

≥ 30

Events/2.5

25

20

15

10

80

Data

///// Syst.Unc.

100

120

Background ZZ^(*)

Background Z+jets, tt Signal (m, =125 GeV)

page 25

ATLAS Preliminary

H→77^(*)→41

 $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$

 $\sqrt{s} = 8 \text{ TeV} : \int Ldt = 20.7 \text{ fb}^{-1}$

140

160 m₄₁ [GeV]

- Selection of 4l candidate events in the signal region: 115 GeV 130 GeV.
- Reconstruction of the spin and parity sensitive variables after all selection cuts.
- Comparison to the signal and background expectations (MC and control regions).

4.6 fb⁻¹ at 7 TeV and 21 fb⁻¹ at 8 TeV

- Two complimentary multivariate approaches.
 - BDT analysis: discriminants trained to separate pairs of different Spin/CP states. Training on signal Monte Carlo after full reconstruction and selection.
 - J^P-MELA: discriminants based on the full Matrix Element analytical calculation for each Spin/CP hypothesis.
- Background: from full simulation (ZZ) and from control regions (others).

ATL-CONF-2013-013

Four lepton decay channel

• Test statistic: ratio of profiled likelihoods.

page 27

Four lepton decay channel

page 28

4.6 fb⁻¹ at 7 TeV and 21 fb⁻¹ at 8 TeV

Expected and observed p_0 values to exclude various spin and parity hypotheses. The shaded column shows the p_0 to exclude an alternative spin and parity hypotheses in favor of the $J^P=0^+$ state.

P _o (BDT analysis)	0-	1+	1-	2+ _m	2⁻
Observed exclusion of hypotheses in favor of J ^P =0 ⁺	0.0015	0.001	0.051	0.079	0.258
Observed exclusion of J ^P =0 ⁺ in favor of alternative hypotheses	0.31	0.55	0.15	0.53	0.037

Exclusion of hypothesis in favor of J ^P =0 ⁺ . CL _S .	0.022	0.002	0.061	0.169	0.258
BDT (J ^P -MELA)	(0.003)	(0.005)	(0.030)	(0.102)	(0.113)

The results are consistent between BDT and J^P-MELA approaches. Data prefer J^P=0⁺ over other hypotheses.

Separation between the Standard Model $J^P=0^+$ and $J^P=2^+_m$ hypotheses as the function of the production mechanism for spin-2 hypothesis.

5.1 fb⁻¹ at 7 TeV + 12.2 fb⁻¹ at 8 TeV.

Discriminant based on the analytical calculation of the matrix element.

 $p_0(0^-)=0.072$; $p_0(0^+)=0.7$. Exclusion of $J^P=0^-$ in favor of $J^P=0^+$: $CL_S = 2.4\%$

No conclusion on the $J^P = 2^+_m$ exclusion: more data required.

CMS results

Spin-parity: results

	Expected [o]		Observed (µ from data)				
	μ=1	μ from data	P(q > Obs alternative) [σ]	P(q > Obs SM Higgs) [σ]	CLs [%]		
$gg \rightarrow o$.	2.8	2.6	3-3	-0.5	0.16		
$\mathbf{gg} \rightarrow \mathbf{o_h^+}$	1.8	1.7	1.7	+0.0	8.1		
$q\underline{q} \rightarrow \mathbf{1^+}$	2.6	2.3	> 4.0	-1.7	< 0.1		
dd → ī .	3.1	2.8	> 4.0	-1.4	< 0.1		
$gg \rightarrow 2m^+$	1.9	1.8	2.7	-0.8	1.5		
$qg \rightarrow 2m^+$	1.9	1.7	4.0	-1.8	< 0.1		

Assuming spin-o, fitting for CP-odd contribution gives $f_{a3} = 0.00^{+0.23}_{-0.00}$ (more in backup)

The studied pseudo-scalar, spin-1 and spin-2 models are excluded at 95% CL or higher

16

Next steps

- The LHC has delivered 23.3 fb⁻¹ at Vs=8 TeV and 5.6 fb⁻¹ at Vs=7 TeV before the technical stop.
- So far we made preliminary analysis on the full dataset for H->γγ and H->ZZ->4l decay channels.
 - The data seem to prefer $J^P=0^+$ over other hypotheses.
 - Adding the spin measurement in the WW decay.
 - Making the statistical combination of all channels.
- The most popular alternative hypotheses are likely to be excluded in favor of the O⁺ in the following months. Further studies (up to 300 fb⁻¹ and beyond):
 - If it is a Higgs boson is it the Standard Model Higgs boson?
 - Study of the structure of HVV interaction.
 - Searches for the CP-violation in the Higgs sector.

In progress

Beyond the Standard Model

- The separation between pre-defined spin and parity hypotheses is possible with the present dataset.
 - Given current indications, one can expect the dominant $J^{P}=0^{+}$.
 - Several Beyond the Standard Model theories with extended Higgs sector predict possible anomalous contribution and/or CP-violation in the Higgs sector.
- Required to explain the matter-antimatter asymmetry of the Universe.
 - In addition to the known CP-violation in B, K, D meson systems.
- The magnitude of the CP-mixing in the Higgs sector may vary significantly from model to model.
 - Observing the dominant J^P=0⁺ state, can we tell if it has a CP-odd admixture?

CP-violation in ZZ coupling

- The H->ZZ^(*)->4l channel well suited for this measurement.
 - Same observables as for the spin and parity measurement: decay angles and masses of the Z's.
- Methods for CP-violation measurements (consider 0⁺ 0⁻ mixing).
 - Likelihood fit to matrix element where the unknown parameters (non-SM couplings) left free.
 - Study of asymmetries directly sensitive to different amplitude parts.
 - Modeling scenarios with different admixtures and excluding them.
- In general, this investigation makes sense: at very least, it gives insights on HZZ vertex.
 - May provide hints of non-Standard Model contributions to the HZZ vertex.

Most general vertex for Spin-0 boson coupling to 2 vector bosons:

$$A(X \rightarrow VV) \sim (a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_{\mu} (q_1 + q_2)_{\nu} + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta}) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}$$
CP-even
CP-odd
CP-odd

CP-conserving tree-level SM: $a_1 = 1$, $a_2 = a_3 = 0$.

CP-violation: $a_3 \neq 0$, given $a_1 \neq 0$ and/or $a_2 \neq 0$.

In general a_i can be momentum-dependent form factors that may be generated in loops with new heavy particles.

It is always possible to select a_1 to be real. a_2 and a_3 are in general complex.

This vertex is in principle valid at all orders of perturbation theory. Contributions from loop corrections will only alter the a_i.

CP-violation in ZZ coupling

The first limit is currently available from CMS. Scan of 2 times the log-likelihood ratio between the two signal models as a function the signal strength and f_{a3} , the fraction of observed 0⁻ events in the dataset.

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) = A_1 + A_2 + A_3,$$

CP-violation in ZZ coupling

European Strategy for Particle Physics. Study of the ATLAS sensitivity to the CPviolating effects in HZZ vertex.

Choose the form factor $a_1 = 1$, $a_2 = 0$ (Standard Model) and vary a_3 (The CP-odd coupling constant).

- Generator level Monte Carlo study. Pythia showering (AU2 CTEQ6L1).
- Smearing functions to simulate detector resolution effects.
- Trigger and lepton reconstruction efficiencies are accounted for by assigning event weights.
- Calculating the expected exclusion of the CP-mixed hypothesis in favor of the Standard Model J^P=0⁺.
- BDT analysis.

CP-violation in Higgs sector

- Considering a CP-even 0+ sample with a strong CP-odd admixture: a₁ = 1, a₂ = 0, a₃ = 6+6i.
 - a₃=6+6i maximizes the interference between CP-even and CP-odd components.
- The mixture of CP-even and CP-odd states is subject to an interference.
 - The interference is responsible for the asymmetries of observed distributions.

CP-violation in Higgs sector

Exclusion (N standard deviations) of CP-violating contribution in favor of the Standard Model $J^P=0^+$ for H->ZZ^(*)->4l channel.

Signal region: 100 GeV to 150 GeV.

The ZZ background is scaled to the total background expectation.

2-004		a ₃ = 6+6i	a ₃ = 6i	a ₃ = 4+4i	
PUB-201	100 fb ⁻¹	3.0	2.4	2.2	Presently approved
I-SYHY-S	200 fb ⁻¹	4.2	3.3	3.1	LHC program
ATLA	300 fb ⁻¹	5.2	4.1	3.8	

Very large CP-violating amplitudes can be excluded with more than 3σ at 100 fb⁻¹. If the observed signal yield is higher than expected, we can put the limit further.

arXiv:0708.0458v2

Further studies

One of the ways to find a beyond the Standard Model contribution in the HZZ vertex is to study the asymmetries of the final state angular distributions.

$$A_{i} = \frac{N(F_{i} > 0) - N(F_{i} < 0)}{N(F_{i} > 0) + N(F_{i} < 0)} \qquad F_{3} = \cos\theta_{1}\sin\theta_{2}\cos\theta_{2}\sin\phi$$
$$F_{4} = \sin^{2}\theta_{1}\sin^{2}\theta_{2}\sin\phi\cos\phi$$
$$F_{5} = \sin\theta_{1}\sin\theta_{2}\sin\phi[\sin\theta_{1}\sin\theta_{2}\cos\phi - \cos\theta_{1}\cos\theta_{2}]$$

$$a_1=0, a_2=\cos(\alpha); a_3=\sin(\alpha)$$

$$a_1=\cos(\alpha); a_2=k_v^*\cos(\alpha); a_3=k_v^*\sin(\alpha)$$

Summary

- First spin and parity results start appearing in LHC experiments.
 - No decisive conclusion yet, but data start looking more like $J^P=0^+$.
- Further studies of the 23.3 fb⁻¹ at 8 TeV + 5.6 fb⁻¹ at 7 TeV dataset should help us to:
 - Exclude all popular alternative hypotheses in combinations of decay channels.
 - Understand the gg/qq production mechanism for spin-2.
 - Start working with VBF, VH.
- By the end of 2013 we will most probably find ourselves in the situation when the J^P=0⁺ is the dominant spin and parity hypothesis.
 - Is this the Standard Model Higgs then?

Summary

- CP-violation and tensor structure of the HZZ vertex: present status.
 - First limits on the observed CP-even-CP-odd mixing published by CMS.
 - With 23.3 fb⁻¹ + 5.6 fb⁻¹ it will be possible to set an upper limit on the CP-violation in the Higgs sector.
 - ATLAS study shows that the exclusion of large CP-violating form factors will require a lot of data (hundreds of fb⁻¹).
- Further studies (after the re-start of the LHC)
 - Establish the dominant spin and parity in the individual channels (ZZ).
 - Searches for the CP-violation and study of the tensor structure of the HZZ vertex.
 - Likelihood fit to matrix element.
 - Study of asymmetries directly sensitive to different amplitude parts.
 - Modeling scenarios with different admixtures and excluding them.

- Important studies which were not discussed in this talk.
- Study of the spin and parity in channels with VBF, VH, ttH production mechanisms.
- Searches for the CP-violation in ttH H->µµ decay.
- Measurements of the Higgs self-couplings.
- Direct searches for additional (heavy) Higgs bosons.

ATLAS detector overview

ATLAS Inner Detector

The ID provides around 3 pixel, 8 SCT and 30 TRT measurements per charged track at $\eta = 0$. Coverage: $|\eta| < 2.5$ (2.0 for TRT) Allows for accurate track and vertex reconstruction. Resolution goal: $\sigma_{pT} / p_T = 0.05\% p_T \oplus 1\%$ Tracking detector with 2 Tesla solenoid field. 3 sub-detectors: (resolution) Pixel: 10/115 μ m in R ϕ /z Silicon strip (SCT): 17/580 μ m Transition radiation tracker (TRT): 130 μ m in R ϕ

Discovery of the new resonance

- The initial observation of the new resonance by ATLAS was done in the combination of channels with 4.8 fb⁻¹ collected at Vs = 7 TeV and 5.8 fb⁻¹ at Vs = 8 TeV.
- $H \rightarrow ZZ^{(*)} \rightarrow 4I, H \rightarrow \gamma\gamma, H \rightarrow WW^{(*)} \rightarrow ev\mu\nu, H \rightarrow bb^{-} \text{ and } H \rightarrow \tau + \tau .$
- Excess with local (global) significance of 5.9 σ (5.1 σ) driven by the ZZ^(*), $\gamma\gamma$ and $WW^{(*)}$ decays. M_H = 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.

$$\begin{aligned} A(X \to V_{1}V_{2}) &= \Lambda^{-1} \left[2g_{1}X_{\mu\nu}f^{*(1)\mu\alpha}f_{\alpha}^{*(2)\nu} \\ &+ 2g_{2}X_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*(1)\mu\alpha}f^{*(2)\nu\beta} + g_{3}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}X_{\beta\nu} \left(f^{*(1)\mu\nu}f_{\mu\alpha}^{*(2)} + f^{*(2)\mu\nu}f_{\mu\alpha}^{*(1)} \right) \\ &+ g_{4}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}X_{\mu\nu}f^{*(1)\alpha\beta}f_{\alpha\beta}^{*(2)} + m_{\nu}^{2}X_{\mu\nu} \left(2g_{5}\varepsilon_{1}^{*\mu}\varepsilon_{2}^{*\nu} + 2g_{6}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} \left(\varepsilon_{1}^{*\nu}\varepsilon_{2}^{*\alpha} - \varepsilon_{1}^{*\alpha}\varepsilon_{2}^{*\nu} \right) + g_{7}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}} \left(\varepsilon_{1}^{*}\varepsilon_{2}^{*}\right) \\ &+ g_{8}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}X_{\mu\nu}f^{*(1)\alpha\beta}\tilde{f}_{\alpha\beta}^{*(2)} + m_{\nu}^{2}X_{\mu\alpha}\tilde{q}^{\alpha}\varepsilon_{\mu\nu\rho\sigma} \left(g_{9}\frac{q^{\sigma}}{\Lambda^{2}}\varepsilon_{1}^{*\nu}\varepsilon_{2}^{*\rho} + g_{10}\frac{q^{\rho}\tilde{q}^{\sigma}}{\Lambda^{4}} \left(\varepsilon_{1}^{*\nu}(q\varepsilon_{2}^{*}) + \varepsilon_{2}^{*\nu}(q\varepsilon_{1}^{*})\right) \right) \right] (3) \end{aligned}$$

- The interaction of a spin-two particle with a pair of electroweak gauge bosons is described by at least 10 independent tensor couplings.
- General idea:
 - Given the number of possibilities, we cannot exclude 'generic' spin-2.
 - We should start with the model with minimal couplings and exclude it in favor of the SM hypothesis, which is relatively well defined.
 - If during this study we observe something 'funny' have a deeper look in spin-2 models.
 - It is possible that both ggF and qq production mechanisms contribute to the spin-2 state. The possible mixtures should thus be studied.

page 51

Φ.

cosθ,

cos0*

Examples of signal and background distributions at the generator level.

Analysis structure

- All samples split in four the different final states (4μ, 4e, 2e2μ, 2μ2e);
 - Different S/B
- Cuts in m₄₁ define regions with different S/B:
 - Signal enhanced with higher S/B and bkg enhanced with lower S/B

Discriminant response

- In total, the analysis has 8 channels: (4μ; 4e; 2e2μ; 2μ2e) × (high S/B bin; low S/B bin)
- Reducible BKG
 - Same control region as in the main analysis -> normalization + discriminant responses shape.
 - From here we calculate normalizations for high and low S/B bins.

ATL-CONF-2012-169

Four lepton decay channel

page 54

• Test statistic: ratio of profiled likelihoods.

ATL-CONF-2012-169 Four lepton decay channel (Council)

		Expected p ₀ (No) (BDT)							
		0+	0-	2_{m}^{+}	2-				
0-	F		0.044	0.20	0.051				
Ľ			(1.7)	(0.83)	(1.6)				
0-	-	0.041		0.048	0.089				
Ľ		(1.7)		(1.7)	(1.3)				
2+		0.20	0.055		0.032				
2	n	(0.84)	(1.6)		(1.9)				
2-		0.046	0.095	0.028					
2		(1.7)	(1.3)	(1.9)					

Expected and observed p_0 values to exclude various spin and parity hypotheses. The shaded column shows the p_0 to exclude spin and parity hypotheses in favor of the 0⁺ state.

Both methods show comparable results. 0+ is the favorite hypothesis preferred by data. 0- is disfavored by all other hypotheses. Data slightly prefer 2⁺ over 2⁻. 100% ggF production assumed for the spin-2.

	Observ			
	0+	0-	2 _m ⁺	2-
0+		0.69	0.57	0.56
Ľ		(-0.50)	(-0.18)	(-0.15)
0-	0.011		0.0015	0.028
Ľ	(2.3)		(3.0)	(1.9)
2+	0.16	0.83		0.41
² m	(0.99)	(-0.95)		(0.22)
2-	0.029	0.69	0.055	
2	(1.9)	(-0.50)	(1.6)	

	Observed p_0 (N σ) (pseudo-MELA)								
		0+	0-	2_{m}^{+}	2-				
0	+		0.76 (-0.72)	0.53 (-0.082)	0.56 (-0.15)				
0	-	0.003 (2.7)		0.01 (2.3)	0.025 (2.0)				
2	+ m	0.17 (1.0)	0.69 (-0.51)		0.33 (0.44)				
2	-	0.025 (2.0)	0.73 (-0.62)	0.089 (1.3)					

Moriond results (ZZ)

Table 9: For an assumed 0⁺ hypothesis H₀, the values for the expected and observed p_0 -values of the different tested spin and parity hypotheses H₁ for the BDT and J^P-MELA analyses. The results are given combining the $\sqrt{s} = 8$ TeV and $\sqrt{s} = 7$ TeV data sets. Also given is the observed p_0 -value where 0⁺ is the test hypothesis and the other spins states are the assumed hypothesis (observed^{*}). These two observed p_0 -values are combined to provide the CL_S confidence level for each test hypothesis (i.e. observed p_0 -value)). The production mode is assumed to be 100% ggF.

		BDT analysis					J ^P -MELA analysis			
		tested	J^P for	tested 0 ⁺ for		tested J^P for		tested 0 ⁺ for		
	an assumed 0 ⁺		med 0 ⁺	an assumed J^P	CLS	an assumed 0 ⁺		an assumed J^P	CLS	
		expected	observed	observed*]	expected	observed	observed*		
0-	p_0	0.0037	0.015	0.31	0.022	0.0011	0.0022	0.40	0.004	
1+	p_0	0.0016	0.001	0.55	0.002	0.0031	0.0028	0.51	0.006	
1-	p_0	0.0038	0.051	0.15	0.060	0.0010	0.027	0.11	0.031	
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168	0.064	0.11	0.38	0.182	
2-	p_0	0.0053	0.25	0.034	0.258	0.0032	0.11	0.08	0.116	

Phys. Rev. Lett. 110, 081803 (2013)

5.1 fb⁻¹ at 7 TeV + 12.2 fb⁻¹ at 8 TeV.

Discriminant based on the analytical calculation of the matrix element.

 $p_0(0^-)=0.072$; $p_0(0^+)=0.7$. Exclusion of $J^P=0^-$ in favor of $J^P=0^+$: $(1-CL_S) = 97.6\%$

No conclusion on the $J^P = 2^+_m$ exclusion: more data required.

CMS results

- The data so far seem to prefer the 0⁺ hypothesis.
- The LHC has delivered 23.3 fb⁻¹ at $\sqrt{s}=8$ TeV before the technical stop.
 - During at least next 2 years this will be the only data we will have.
- Program for further studies (current dataset and beyond)
 - Exclude 0⁻, 2⁺_m, 1⁺.
 - Exclude 1⁻, 2⁻.
 - Exclude large qq contributions in spin-2 production.
 - Start studying other production mechanisms: VBF, VH, ttH.
- The most popular alternative hypotheses are likely to be excluded in favor of the 0⁺ in the following months/years.
 - Next step: study of the tensor structure of HVV interaction.

CP-violation in Higgs sector

- Event selection in general matches the discovery analysis (H->ZZ->41 section). Phys. Lett. B716 (2012) 1-29
- Analysis: Applying two independent BDT discriminants to separate spin and parity states and to reject the ZZ background.
 - First BDT is trained to separate spin-CP states using angular and mass variables: $\cos \theta_1$, $\cos \theta_2$, ϕ , $\cos \theta^*$, ϕ_1 , m_{z_1} , m_{z_2} .
 - Second BDT is trained to separate Higgs signal from the ZZ background using kinematic variables.
 - Stat test: profiled likelihood on the combination of four final states.
- Calculating the expected exclusion of the CP-mixed hypothesis in favor of the Standard Model 0⁺.

- CP-odd amplitudes are naturally expected to be suppressed in the HVV coupling.
 - The channels containing the HVV coupling in the final state are hence not ideal for the CP-studies.
- Naturally remain the channels where there is no HVV couplings in the final state.
- Studies were done for ttH, H->μμ and ttA, A->μμ.
 - Too little statistics.
 - About 1σ separation between pure CP-even and CP-odd states at 3000 fb⁻¹.

CP-violation in Higgs sector

