ANR SPLAM: nouveaux ASUs

Réunion technique LAPP Jan. 16th, 2013

R. Gaglione

Laboratoire d'Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3 FRANCE

Jan 13th, 2013

Resistive ASUs

ANR Status

Conclusions

gaglione@lapp.in2p3.fr Jan. 2013

Outline

Resistive ASUs

ANR Status

Conclusions

A resistive layer is a resistive coating which produce a distributed R-C network.

The resistivity is given in Ω/\Box : $R = \frac{\rho \cdot l}{h \cdot L}$ with $L = l \rightarrow R = f(h)$ Common values in PCB manufacturing : 100 k Ω/\Box to 10 M Ω/\Box . The capacitance is a function of the dielectric material and its thickness: $C = \varepsilon_0 \cdot \varepsilon_r \frac{A}{d}$

Orders of magnitude

Resistivity Layer thickness: 17 to 35 $\mu m.$ Common values in PCB manufacturing: 100 k Ω/\Box , 1 M Ω/\Box and 10 M Ω/\Box .

Capacitance

Common values for 1 cm^2 anode :

Material	Thickness	Capacitance
Kapton	12.5 µm	240 pF
FR4	50 µm	80 pF
Photoresist	25 µm	100 pF
AriCH ₄	128 µm	20 pF (measured)

Reminder: current protection

Rp=1 M Ω , Rs=10 Ω , Cs=470 pF, D are ON-Semiconductor NUP 4114, Dx are integrated fast diodes.

Proposition #1

Add a protective layer on the pad à la MAMMA. Implementation studied by Alex, Cyril, Renaud and Rui, presented the 10/01/2012.

Proposition #1

The myth: the parasitic capacitor ! For a 100 μ m \varnothing via with 50 μ m insulation (worst case !) C_{par}<0.5 pF. Mesh pillar over the via to ensure regular field (anyway, the via is grounded and not necessary over the R layer).

gaglione@lapp.in2p3.fr Jan. 2013

Resistive ASUs

Proposition #2

Perform a pure capacitive readout. cf. R&D with BC16T.

copper anode

Unrealistic without ceramic-loaded films (loss of signal too important). Expensive and film not easy to stock up (need license agreement...).

gaglione@lapp.in2p3.fr Jan. 2013

Resistive ASUs

Charge vs Cs vs Cdet

Signal transfert ratio vs Cdet and Cprot

Charge vs Cs

Charge transfert as a function of Cprot

Proposition 3

À la COMPASS: same as #1, but R layer is discharged via FE. resistive layer silkscreen resistor photoresist copper pad Cdet

Simulation of #1

Simulation of #3

Pro and con

Simulation results very similar, but for both case, R and C must be tuned.

Solution Mamma	Solution COMPASS		
pro	con	pro	con
should work	sophisticated vias	easy	dead time
K at 0V possible			noisy?

Mamma (32x48) already designed by Alex (2217E + 1200E tool + postprocess: 2100 CHF/pièce + 600 CHF tool) Possible to test via connection (different configuration) for 1700 CHF (all included) Compass possible with existing ASU (postprocess: 4000 CHF for 2 boards)

Big vs small

Small

- Small prototype may help to test via connection for 1st solution, but there is another way, quickest and less expensive.
- Risk to be dominated by edge effect \rightarrow if small proto are choosen, perhaps 16x16 is much better than 8x8.

Full size

- All ASU design already done \rightarrow quickest and separate potential problems (same routing, etc)
- No new interdif (design time + pcb cost + new tools for cabling)
- No software nor firmware modification
- Result can be compared directly and immediately to square meter ASUs
- More than 300 MICROROC remaining.

Resistive ASUs

Outline

Resistive ASUs

ANR Status

Conclusions

Simulations

Well engaged, but we need to extract parameters from a prototype!. Then only we'll be able to ensure accuracy of simulations. Values are at the moment "orders of magnitude", mix of theory and rough measurement : we'll use resistive prototype to extract some values.

Protections tests

Jérôme has successfully tested a first batch of the new silicon protective structures (diode+MOS). The comparison with the reference protection has not been done yet, because the reference structure does not work yet... Investigation on the way!

Funds

Allocated by ANR (excluding Jérôme's contract): 51 500 € Bonus from Arves Industries : 7 564 € Total : 59 064 € Remaining : 43 271 €

Outline

Resistive ASUs

ANR Status

Conclusions

Conclusions

- According to me, both solutions (MAMMA and COMPASS) are appealing and both should be tested
- Do not forget that we want to build large detector in fine
- Jerôme's contract ends this year : big prototype are quicker to build, and the cost is not so much higher
- Big prototype will help us to refine modelling.