A. Présentation

1. <u>But</u>

Recherche de particules se désintégrant en

- 2 leptons chargés (ex : $Z \rightarrow l^+ l^-$, où $l^+ l^- = e^+ e^- ou \mu^+ \mu^-$)
- 2 photons $(ex : H \rightarrow \gamma\gamma)$
- 4 leptons chargés (ex : $H \rightarrow l^{\dagger}l^{\dagger}l^{\dagger}$, où l^{\dagger}l^{\dagger}l^{\dagger}=e^{\dagger}e^{-}e^{+}e^{-}, $e^{\dagger}e^{-}\mu^{\dagger}\mu^{-}ou \ \mu^{\dagger}\mu^{-}\mu^{+}\mu^{-}$)

2. Comment

Analyse d'un échantillon de 50 événements

(1 événement = 1 croisement de faisceaux avec au moins une collision proton-proton).

- ► pour chaque événement :
- 1) rejet du bruit de fond sélection des trois type de signaux :
 - i. 1 paire de leptons de charges opposées,
 - ii. 1 paire de photons, ou bien
 - iii. 2 paires de leptons de charges opposées
- 2) mesure de la masse invariante du système formant le signal
- ► sur l'ensemble de données analysées :

formation des *spectres en masse invariante* de chacun des 3 types de signaux

reconstruite ne correspondra à rien et ne prendra pas de valeur particulière

B. Démarrage

1. Lancer le logiciel Masterclasses2013_0xx \ Z-path \ HYPATIA.jar Click bouton droit double cliquer répertoire sur le bureau ouvrir avec "Java Sun 6" 2. Chargement (Track Momenta Window) Ж Next Event Electron Muon Photon Delete Track **Reset Canvas** ETMis: 13.877 GeV w: 0.785 rad Collection: MET_RefFinal I−1/Masterclasses2013/TD/T0_BE_COPIED/Masterclasses2013_001/Z−c 🗇 🗇 📀 🔿 👧 1 cliquer pour ouvrir - - > 2 cliquer pour afficher le bureau $\widehat{\Box}$ Look Int Z-path - 6 Tracks 1 3 ouvrir le fichier : Tracks 3 **Configuration** tallysheet a) Fichier test à regarder tous ensemble : events З hypatia2013-J6.zip 2 hvpatia2013-17.zip geometry Z-path\events\exercise2 Z.zip 📑 help 📑 img Avant de passer à la suite, effacer les résultats du test !! File View Histograms Prefer 📑 lib default location Read Event Locally (Invariant Mass Window : File/Clear Hypathia Project) File Name: Read Event From URL (live) Files of Type: .xml, .zip, .gzip, .gz **Clear Hypatia Project** b) Fichier à analyser en binôme : Load Hypatia Project Open Cancel Z-path\data\18mars\dir05_groupX.zip 3. Coupures & contrôles (Control Window) selon votre groupe

Carameter Control Interaction and Window Control Output Display	
Pro 1 Data Cuts InDet Calo MuonDet Objects Geometry	
Calo Value	2)
Objects ☑ d0 < 2.5 mm ¹ = 5	
ATLAS	
□ d0 Loose < 2.0 cm	
□ z0-zVtx < 2.5 mm	\mathbf{N}
> 0	,
A Number Pixel Hits >= 2	
4 Vumber SCT Hits >= 7 6	

Coupures (conditions de visualisation)
1 sélectionner l'onglet "Parameter Control"
2 sélectionner le sous-onglet "Cuts"
3 modifier la valeur de la coupure sur le Pt (5 ou 10 GeV)
4 (dé-)sélectionner les coupures :

Number Pixel Hits
Number SCT Hits

Contrôle : sélectionner l'outil de
5 zoom/rotation ou

6 sélection

C. Sélection

1. <u>Sélection des particules</u>

Leptons chargés : e, µ

- 1 sélectionner l'onglet « *Tracks* » pour visualiser les traces
- 2 sélectionner la trace correspondant au lepton
- 3 cliquer sur « e » ou « μ »pour ajouter le lepton dans le tableau de calcul de masse

2 leptons	: e+e-, µ+µ-
2 photons	: γγ
4 leptons	: e+e-e+e-, e+e-μ+μ-, μ+μ-μ+μ-

Photons (attention aux conversions)

1 sélectionner l'onglet « *Physics Objects* » pour visualiser les amas d'énergie

- 2 sélectionner l'amas correspondant au photon
- 3 cliquer sur « γ » pour ajouter le photon dans le tableau de calcul de masse

2. Mesure de la masse

$M(2 \text{ corps}) \longrightarrow M(4 \text{ corps})$

HYbrid Pupils' Analysis Tool for Interactions in ATLAS - version 7.3 - Invariant Mass Window <2>								- 🗆 ×		
File View Histograms Preferences Help										
File Name	ETMis [GeV]	Track	P [GeV]	+/-	Pt [GeV]	φ	η	M(2) [GeV]	M(4) [GeV]	e/m/g
00008_Exercise2.xml	12.211	Tracks 6	9.9	+	8.1	1.725	-0.656	3.110	126.269	m
		Tracks 41	10.1	-	8.3	1.343	-0.647			m
		Tracks 2	84.2	-	42.2	-1.153	1.315	89.694		e
		Tracks 43	53.1	+	43.1	2.075	0.668			e

D. Chargement des résultats

1. Sauvegarde de la table des masses invariantes (Track Momenta Window)

File / Export Invariant Masses

enregistrer le fichier dans :

Masterclasses2013_0xx/local/18mars

2. <u>Téléchargement des résultats :</u>

- ouvrir un navigateur internet (chrome, firefox, ...)
- aller sur : http://cernmasterclass.uio.no/
- renseigner :

login: ippog ; passwd: mc13

- cliquer sur <u>oPlot</u>
- cliquer sur <u>Students</u> (menu horizontal)
- choisir :
 - année / mois / jour / Marseille
- choisir le groupe qui correspond au lot que vous avez analysé : dir05_groupX.zip
- charger le fichier que vous aviez sauvé à l'étape précédente

3. <u>Réfléchir à l'interprétation des résultats</u> (voir feuille « Z-path : préparation de la visio-conférence »)

		HYbrid Pupils' Analy	sis Tool for Intera
File View Histograms Prefe	erences Help		
Read Event Locally	ETMis [GeV]	Track	P [Ge
Read Event From URL (live)	12.211	Tracks 6	9.9
Clear Illunatia Project		Tracks 41	10.1
Clear Hypatia Project		Tracks 2	84.2
Load Hypatia Project		Tracks 43	53.1
. Save Hypatia Project			
Export Invariant Masses	Window - File: 00008_Exercise	2.xml Run: 185761 Event	:: 51262549
Loop over events			
Save Image of Canvas	_	15 ET (GeV)	
Animated Event			
Event Properties			
Read Geometry			
Read G4Steps			
Exit			

selon votre aroupe

Spectre en masse invariante de systèmes composés de

1. Désintégrations en 2 leptons chargés

2. <u>Recherche du boson de Higgs en</u>

- 1) 4 leptons chargés
- 2) 2 photons

Spectre en masse invariante de systèmes composés de

- 1. Désintégrations en 2 leptons chargés
- 2. <u>Recherche du boson de Higgs en</u>
 - 1) 4 leptons chargés
 - 2) 2 photons

Un résultat d'ATLAS

Les mésons Y vus par LHCb

3 résonances bien distinctes

$Z \rightarrow e^+e^-$ analysé par ATLAS

Recherche du Z' $\rightarrow e^+e^-$ dans ATLAS

Spectre en masse invariante de systèmes composés de

1. Désintégrations en 2 leptons chargés

- Observation des mésons J/ ψ et Y ainsi que du boson Z.

- Observation d'une particule de très haute masse (1 TeV) correspondant à un faux boson Z' artificiellement rajouté dans les données. En fait, ATLAS a déjà exclu la possibilité qu'un tel boson existe.

2. <u>Recherche du boson de Higgs en</u>

- 1) 4 leptons chargés
- 2) 2 photons

Spectre en masse invariante de systèmes composés de

1. <u>Désintégrations en 2 leptons chargés</u>

- Observation des mésons J/ ψ et Y ainsi que du boson Z.

- Observation d'une particule de très haute masse (1 TeV) correspondant à un faux boson Z' artificiellement rajouté dans les données. En fait, ATLAS a déjà exclu la possibilité qu'un tel boson existe.

2. Recherche du boson de Higgs en

1) 4 leptons chargés

2) 2 photons

Recherche du boson de Higgs dans ATLAS

Events / 2 GeV **ATLAS** Data 3500 Sig+Bkg Fit (m_=126.5 GeV) 3000 Bkg (4th order polynomial) 2500 2000E 1500⊨ H→γγ 500 √s=8 TeV, ∫Ldt=5.9fb⁻¹ 200 Events - Bkg 100 -100 -200 100 110 120 130 140 150 160 m_{γγ} [GeV]

Qu'avons-nous observé aujourd'hui ?

A-t-on vu un signe du boson de Higgs ? Pourquoi ?