Présentation

1. <u>But</u>

Recherche de particules se désintégrant en

- 2 leptons $(ex : Z \rightarrow l^{+}l, o\dot{u} l^{+}l^{-} = e^{+}e^{-}ou \mu^{+}\mu^{-})$
- 2 photons $(ex : H \rightarrow \gamma \gamma)$
- 4 leptons (ex : $H \rightarrow l^{\dagger}l^{\dagger}l^{\dagger}$, où $l^{\dagger}l^{\dagger}l^{\dagger}=e^{\dagger}e^{-}e^{+}e^{-}$, $e^{\dagger}e^{-}\mu^{+}\mu^{-}ou \ \mu^{+}\mu^{-}\mu^{+}\mu^{-}$)

2. Comment

Analyse d'un échantillon de 50 événements

(1 événement = 1 croisement de faisceaux avec au moins une collision proton-proton).

► pour chaque événement :

1) rejet du bruit de fond - sélection des trois type de signaux :

- i. 1 paire de leptons de charges opposées,
- ii. 1 paire de photons, ou bien
- iii. 2 paires de leptons de charges opposées
- 2) mesure de la masse invariante du système formant le signal
- ► sur l'ensemble de données analysées :

formation des spectres en masse de chacun des 3 types de signaux

Démarrage

1. <u>Lancer le logiciel</u>

Masterclasses2013_0xx \ Z-path \ HYPATIA.jar

répertoire sur le bureau

double cliquer

Click bouton droit ouvrir avec "Java Sun 6"

2. Chargement (Track Momenta Window)

- 1) cliquer pour ouvrir
- 2) cliquer pour afficher le bureau
- 3) ouvrir le fichier :
- a) Fichier test à regarder tous ensemble :
 - *Z*-path\events\exercise2_*Z*.zip
- b) Fichier à analyser :
 - Z-path\data\dir07_groupX.zip

selon votre groupe –

3. Coupures & contrôles (Control Window)

0	HYPATIA - Co	ontrol Window	- 🗆 ×
Parameter (Interaction and Window Control	Output Display	
Projection	Data Cuts InDet Calo MuonDet	Objects Geometry	
InDet	2 Name	Value	
Calo		> 5.0 GeV 3	1 V.
Objects	☑ [d0]	< 2.5 mm	= 5
ATLAS	. ₽ z0	< 20.0 cm	
	🔲 d0 Loose	< 2.0 cm	
	□ z0-zVtx	< 2.5 mm	
	Layer	> 0	6
4	✓ Humber Pixel Hits	>= 2	
•	Jumber SCT Hits	>= 7	- 6

<u>Coupures</u> (conditions de visualisation)
1) sélectionner l'onglet "*Parameter Control*"
2) sélectionner le sous-onglet "Cuts"
3) modifier la valeur de la coupure sur le Pt
(5 ou 10 GeV)
4) (dé-)sélectionner les coupures :

Number Pixel Hits
Number SCT Hits

Contrôle : sélectionner l'outil de

5) zoom/rotation ou

6) sélection

Sélection

1. <u>Sélection des particules</u>

e+e-, µ+µ-ŶΥ $e+e-e+e-, e+e-\mu+\mu-, \mu+\mu-\mu+\mu-$

Photons (attention aux conversions)

1) sélectionner l'onglet « *Physics Objects* » pour visualiser les amas d'énergie

2) sélectionner l'amas correspondant au photon

3) cliquer sur « γ » pour ajouter le photon dans le tableau de calcul de masse

2. Mesure de la masse

dans le tableau de calcul de masse

1) sélectionner l'onglet « Tracks » pour

2) sélectionner la trace correspondant au lepton

3) cliquer sur « e » ou « u »pour ajouter le lepton

Leptons : e, µ

visualiser les traces

$M(2 \text{ corps}) \longrightarrow M(4 \text{ corps})$

HYbrid Pupils' Analysis Tool for Interactions in ATLAS - version 7.3 - Invariant Mass Window <2>								- 🗆 ×		
File View Histograms Preferences Help										
File Name	ETMis [GeV]	Track	P [GeV]	+/-	Pt [GeV]	φ	η	M(2) [GeV]	M(4) [GeV]	e/m/g
00008_Exercise2.xml	12.211	Tracks 6	9.9	+	8.1	1.725	-0.656	3.110	126.269	m
		Tracks 41	10.1	-	8.3	1.343	-0.647			m
		Tracks 2	84.2	-	42.2	-1.153	1.315	89.694		e
		Tracks 43	53.1	+	43.1	2.075	0.668			e

Chargement des résultats

1. <u>Sauvegarde de la table des masses invariantes :</u>

File / Export Invariant Masses < enregistrer le fichier dans :

Masterclasses2013_0xx/local/date du jour

2. <u>Téléchargement des résultats :</u>

http://cernmasterclass.uio.no/

- login: ippog ; passwd: mc13
- cliquer sur oPlot
- cliquer sur Students (menu horizontal)
- sélectionner : année / mois / jour / Marseille
- choisir le groupe qui correspond au lot que vous avez analysé : dirX_groupY.zip
- charger le fichier que vous avez sauvé à l'étape précédente

0		HYbrid Pupils' Ana	lysis Tool for Interac
File View Histograms Pre	ferences Help		
Read Event Locally	ETMis [GeV]	Track	P [Ge\
Read Event From URL (live)	12.211	Tracks 6	9.9
Clear Hypatia Project		Tracks 41	10.1
Load Hypatia Project		Tracks 2	84.2
Load Hypatia Project		Tracks 43	53.1
Save Hypatia Project	s Window - File: 00008 Exer	cise2 xml Run: 185761 Eve	nt: 51262549
Export Invariant Masses			Intro SECCOSIS
Loop over events			
Save Image of Canvas	_	15 ET (GeV)	
Animated Event			
Event Properties			
Read Geometry			
Read G4Steps			
Exit		11	

INTERPRETATION

Un résultat d'ATLAS

Les mésons Y vus par LHCb

3 résonances bien distinctes

$Z \rightarrow e^+e^-$ analysé par ATLAS

Recherche du Z' $\rightarrow e^+e^-$ dans ATLAS

