Direct BSM Searches in Single Top-Quark Signatures

Top-LHC France – Lyon 21-22/03/13

Julien Donini LPC/Université Blaise Pascal – Clermont-Ferrand

'Direct' searches with single top

Search for new (heavy) particles - not necessarily resonances

Excited quarks Charged Higgs

Charged W-like bosons (W') Composite models (top-pion)

New intermediate particles suppressed as 1/M²

Any top+X searches Ex: monotop top + MET

W'→tb searches

Search for W' boson(s)

- Predicted by many extensions of the SM
- L/R models, KK excitations, Little Higgs, ...
- Why search for W'→tb decay
 - More model independent than leptonic decay
 - Probe leptophobic sector
 - BSM dynamics could explain high top mass
- Model independent approach
 - Effective Left-Right model (Sullivan arXiv:1208.4858v1)
 - W' with left-handed, right-handed or mixed couplings

$$\mathcal{L} = \frac{V_{ij}'}{2\sqrt{2}} \bar{f}_i \gamma_\mu \left(g_{i,j}'^R (1 + \gamma^5) + g_{i,j}'^L (1 - \gamma^5) \right) W'^\mu f_j + h.c.$$

$W'_R \rightarrow tb search (1.1 fb^{-1}, 7 TeV)$

Signature: e/µ+2jets, 1-2 btags
p_T(lep,jet)>25 GeV, MET> 25 GeV
m_T(W)+MET>60 GeV
Method: fit reco. m_{tb} spectrum
Bckgd: W+jets/QCD rate data-derived

PRL 109, 081801 (2012)

Signal model: Pythia ...

Theory: Z.	Sullivan	Phys.	Rev. D	<mark>) 66</mark> ,	075011	(2002).
------------	----------	-------	--------	---------------------	--------	---------

$m_{W'_{\mathcal{B}}}$ [GeV]	$\mathcal{B}(W'_R \to tb)$	$\sigma imes \mathcal{B}$ [pb]
500	0.298 ± 0.002	54.6 ± 2.1
750	0.319 ± 0.001	10.9 ± 0.6
1000	0.326 ± 0.001	2.92 ± 0.18
1250	0.328 < 0.001	0.91 ± 0.07
1500	0.330 < 0.001	0.31 ± 0.03
1750	0.331 < 0.001	0.11 ± 0.01
2000	0.332 < 0.001	0.044 ± 0.005

NLO production cross section times branching fraction $B(W' \rightarrow tb)$ (pb)

ATLAS 2 jets 1-tag 17 103 W+jets $\int L dt = 1.04 \text{ fb}^{-1}$ Diboson, Z+jets s = 7 TeV Single top 102 Events • W_m (m = 1 TeV) x JES Uncertainty 10 10 500 1000 1500 2000 2500 m, [GeV]

$W'_R \rightarrow tb search (1.1 fb^{-1}, 7 TeV)$

Samples	Single-tagged	Double-tagged
W + jets	5970 ± 1000	290 ± 180
Multijets	1120 ± 560	47 ± 47
tī	1560 ± 130	360 ± 30
Single top	1240 ± 90	120 ± 10
Diboson, $Z + jets$	320 ± 120	14 ± 2
Total prediction	10200 ± 1200	830 ± 190
Data	10428	844

- \rightarrow No significant excess founds
- **95% C.L cross-section limit**: Bayesian approach (BAT)

LPC: 8 TeV analysis ongoing on right/left W' boson search

$W'_{R,L} \rightarrow tb \text{ search (5.0 fb}^{-1}, 7 \text{ TeV)}$

Physics Letters B 718 (2013)

Signature: e/μ +jets, 1-2 btags • $p_T(e/\mu)$ >35/32 GeV, MET(e/μ)> 35/20 GeV • $p_T(j_1)$ >100 GeV, $p_T(j_2)$ >40 GeV Method: fit reco. m_{tb} / BDT spectrum • m_{tb} analysis specific: $p_T(top)$ >75 GeV, $p_T(j_1, j_2)$ >100 GeV, 130<M(top)<210 GeV • BDT analysis: ~40 (!) input variables

Bckgd: W+jets rate data-derived

Signal model: CompHep

- right/left/mixed W' couplings
- \bullet Interference between single-top s-channel and W' $_{\rm L}$ included

u+iets. m=1.2

NLO corrections on rate and shape

CMS Simulation

M _{W'} (TeV)	$M_{\nu_{\rm R}} \ll N$	∕′ _W	14	$M_{\nu_R} > M$	w	28	litz	n 271	— w _R
	σ_{R}	σ_{L}	$\sigma_{\rm LR}$	$\sigma_{\rm R}$	$\sigma_{\rm L}$	$\sigma_{ m LR}$	n -	1 1, 17	i w mixe
0.9	1.17	2.28	3.22	1.56	3.04	4.30	- au		ц.
1.1	0.43	1.40	1.85	0.58	1.86	2.47	힌 10 ² -	1	<u>ц</u>
1.3	0.17	1.20	1.39	0.23	1.60	1.85	36	ے لا	L'I
1.5	0.07	1.13	1.21	0.099	1.51	1.62	E	ſ .	
1.7	0.033	1.12	1.15	0.044	1.50	1.54	F	7	կղլ
1.9	0.015	1.11	1.13	0.020	1.49	1.51			٦rL

NLO production cross section times branching fraction $B(W' \rightarrow tb \rightarrow bblv)$ (pb)

Julien Donini

M(tb) [GeV]

$W'_{R,L} \rightarrow tb search (5.0 fb^{-1}, 7 TeV)$

Inv. mass analysis

BDT analysis

$W'_{R,L} \rightarrow tb$ search (5.0 fb⁻¹, 7 TeV)

95% C.L. limits on W' mass

Analysis	$(a^{L}, a^{R}) = (0, 1)$		$(a^{L}, a^{R}) = (1, 0)$	$(a^{L}, a^{R}) = (1, 1)$
	$M_{\nu_{\rm R}} > M_{\rm W'}$	$M_{\nu_{\rm R}} \ll M_{{ m W}'}$	$M_{\nu_{\mathrm{R}}} \ll M_{\mathrm{W}'}$	$M_{\nu_{\rm R}} \ll M_{\rm W'}$
BDT	1.91 TeV	1.85 TeV	-	-
Invariant mass	-	-	1.51 TeV	1.64 TeV

$W'_{R,L} \rightarrow tb$ search (5.0 fb⁻¹, 7 TeV)

Limits on coupling strength a^R and a^L

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \bar{f}_i \gamma_\mu \left[a_{f_i f_j}^{\mathsf{R}} (1 + \gamma^5) + a_{f_i f_j}^{\mathsf{L}} (1 - \gamma^5) \right] W'^\mu f_j + \text{h.c.},$$

Procedure

- \bullet assume that $a_{ud}\,(W'\,\,prod)$ and a_{tn} are the same
- vary a^{L} and a^{R} from 0 to 1
- \bullet reweight m_{tb} template for each value of a^L and a^R

$$\begin{split} \sigma &= \sigma_{\text{SM}} + a_{ud}^{\text{L}} a_{tb}^{\text{L}} (\sigma_{\text{L}} - \sigma_{\text{R}} - \sigma_{\text{SM}}) + \left(\left(a_{ud}^{\text{L}} a_{tb}^{\text{L}} \right)^2 + \left(a_{ud}^{\text{R}} a_{tb}^{\text{R}} \right)^2 \right) \sigma_{\text{R}} \\ &+ \frac{1}{2} \left(\left(a_{ud}^{\text{L}} a_{tb}^{\text{R}} \right)^2 + \left(a_{ud}^{\text{R}} a_{tb}^{\text{L}} \right)^2 \right) (\sigma_{\text{LR}} - \sigma_{\text{L}} - \sigma_{\text{R}}) \end{split}$$

- Compute limit for each a^L , a^R , m(W') hypothesis
- Compare to theory and set limits in a^R, a^L plane

Reach for W' boson at \sqrt{s} = 7/8 TeV

Z. Sullivan et al., arXiv:1208.4858v1 (2012)

Pheno analysis based on effective W' boson Lagrangian

- consider pure Right/Left W' boson couplings
- For W'_L assess effects of destructive/constructive interferences
- simple cut-based analysis performed at 7 & 8 TeV
- set exclusion limits on cross-section and couplings

Event selections

Lead jet	$E_{T_{j_1}} > 0.2m_{W'}$	$ \eta_{j1} < 2.5$
b-tagged jet	$E_{Tb} > 20 \text{ GeV}$	$ \eta_b < 2.5$
Leading e^{\pm} or μ^{\pm}	$p_{Tl_1} > 20 \text{ GeV}$	$ \eta_{l_1} < 2.5$
Second e^{\pm} or μ^{\pm}	$p_{Tl_2} < 10 \text{ GeV}; \text{ or}$	$ \eta_{l_2} > 2.5$
Missing E_T	$E_T > 20 \text{ GeV}$	
Reconstructed top	$M_{l\nu b} < 200 \text{ GeV}$	
W' mass window	$0.75 m_{W'} < M_{l\nu bj} < 1.1 m_{W'}$	$n_{W'}$

Mass Limits (5 fb ⁻¹)	7 TeV	8 TeV
W' _R	1.8 TeV	1.7 TeV
W'L	1.7-1.9 TeV	1.6-1.7 TeV

Reach slightly worse at 8 TeV (gluon initiated bckgd grow faster that quark initiated signal)

Limits on couplings

Exclusion Limit on coupling can be derived from cross-section limit $\rightarrow \sigma(pp \rightarrow W' \rightarrow tb)$ scales roughly as ~ $(g'/g_{SM})^2$

Important to show exclusion for values larger than 1

- theory remains perturbative up to g'/g_{SM} ~ 5
- but W' boson width scales as $(g'/g_{SM})^2 \rightarrow \text{effect non negligible for } g'/g_{SM} > 2-3$ and need to be properly simulated.

b* search (4.7 fb⁻¹, 7 TeV)

arXiv:1301.1583v1 (submitted to PLB)

Single b*-quark produced through chromomagnetic interaction and decays to a W+t search performed in dilepton and lepton+jets final states and combined

Signal model: MadGraph, generated right/left/vector-like processes

Julien Donini

AS

Discriminant distributions for each channel are combined using Bayesian method

b^{*} search

m(b^{*})>870 GeV at 95% C.L (benchmark scenario)

Monotop searches

Many BSM models predict final states with a single top quark + $\not\!\!\!E_T$, e.g. :

 $\begin{array}{ll} ug \to \tilde{u}_i \tilde{\chi}_0^1 \to t \tilde{\chi}_0^1 \tilde{\chi}_0^1 & (2\text{-neutralinos in R-parity violating SUSY}) \\ \bar{d}\bar{d} \to V \to t \bar{v} & (\text{leptoquark decay in } SU(5) \text{ theories}) \end{array}$

- A signature-based approach in new physics searches can be followed
- Phenomenological description with a most general effective Lagrangian Phys.Rev. D84 (2011) 074025 (J. Andrea, B. Fuks)

Slides from Timothée !

Resonant production

FC non resonant production

New particules introduced with associated effective couplings

field	charge	spin	color multiplicity	antiparticle = particle	comment	
¢	0	0	1	yes	non resonant production	
χ	0	1/2	1	yes	resonant production	
V	0	1	1	yes	non resonant production	
	resonnances					
φ	$\pm 2/3$	0	3	no	decays into <i>t</i> +χ	
X	$\pm 2/3$	1	3	no	decays into <i>t</i> +χ	
φ	$\pm 1/3$	0	3	no	4-f effective interaction	

Five scenarios defined in Phys.Rev. D84 (2011) 074025 (J. Andrea, B. Fuks)

Scenario	model type	mass of invisible state	σ _{tot} [pb] @8 TeV
S1	scalar resonance m_{φ} = 500 GeV	<i>m</i> _χ = 50 GeV	1.68
S2	vector resonance $m_X = 500 \text{ GeV}$	<i>m</i> _χ = 300 GeV	6.20
S3	flavour changing interaction (spin 0)	<i>m</i> _φ = 300 GeV	1.05
S4	flavour changing interaction (spin 1)	$m_V = 50 \text{ GeV}$	186.7
S5	4-fermions effective interaction ($m_{\tilde{\varphi}}$ = 3 TeV)	<i>m</i> χ = 0 GeV	2.7×10^{-4}

Limits on cross-section vs. invisible state mass can be used to set limits on effective couplings and constrain new physics

- Result from CDF hadronic channel analysis in non-resonnant case : $\sigma \lesssim 0.5$ pb for a mass between 0 and 150 GeV at $\sqrt{s} = 1.96$ TeV Phys.Rev.Lett. 108 (2012) 201802
- Indirect constraint on monotop production in resonant case : use of LHC results on hadronic Z decays, K⁰-K⁰ mixing or dijet production Phys.Rev. D86 (2012) 034008 (Wang et al.)
- Ongoing analyzes @8 TeV in leptonic and hadronic channel in ATLAS and CMS

Conclusion and outlook

• BSM searches in single-top physics at LHC

- Performed in parallel with indirect and SM measurements
- So far search for W' boson, b* quark
- Next: W' update, search for monotop events
- Limits on couplings is as (more?) important as limits on masses

Future analysis paths

- Invest in boosted top topologies
- Investigate full hadronic searches

Conclusion

- Rich sector, many interesting BSM signatures
- Maintaining contact with your (favorite) theorists is very important

Backup material

Monotop

CDF result

- Selection of events with monotop topology in hadronic channel
- ▶ Trigger : 2 calorimeter clusters + missing $\not\!\!\!E_T$
- ► Result : $\sigma(p\overline{p} \rightarrow t + D) \lesssim 0.5 \text{pb}$ for a mass between 0 and 150 GeV

Phys.Rev.Lett. 108 (2012) 201802

Monotop

Indirect constraints on resonant monotop production

For some cases, limits on the coupling of the scalar resonance ϕ to SM quarks can be set

Phys.Rev.Lett. 108 (2012) 201802 Wang et al.

Chirality and helicity

Spin correlation in qq' \rightarrow W' \rightarrow tb

- Impacts angular correlations in top production and decay
- See for example: <u>http://arxiv.org/abs/0911.0620</u>

The lepton moves in the direction of the top spin
W/W'_L: opposite to top moving direction
W'_R: same direction

Ex: SM single-top s-channel