

Indirect Search in the ttbar final state

(polarization, spin, asymmetries, differential distributions)

Frédéric Déliot, CEA/Irfu-Saclay

top LHC-France meeting, CC in2p3, 22-March-2013

W polarization

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8}\left(1+\cos\theta^*\right)^2 F_R + \frac{3}{8}\left(1-\cos\theta^*\right)^2 F_L + \frac{3}{4}\left(1-\cos^2\theta^*\right) F_0$$

ATLAS and CMS 7 TeV measurements combined with BLUE

- \rightarrow ATLAS lepton+jets 35 pb⁻¹, lepton+jets, dilepton 1.0 fb⁻¹
- → CMS single muon channel 2.2 fb⁻¹
- in agreement with the NNLO predictions

results:

 $F_0 = 0.626 \pm 0.034 \text{ (stat.)} \pm 0.048 \text{ (syst.)}$ $F_L = 0.359 \pm 0.021 \text{ (stat.)} \pm 0.028 \text{ (syst.)}$

• next steps ?

 \rightarrow combination with Tevatron

s = 7 TeV

0.7

0.75

F_o

Spin correlation measurement in ATLAS

- top-antitop spins are produced correlated
- top decays before hadronizing
 - → the angles of its decay products carry informations about the top quark spin
 - → degree of correlation: $A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) N(\uparrow\downarrow) N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\downarrow\downarrow) + N(\downarrow\uparrow)}$

ASMhel = 0.31

 \rightarrow can be extracted from $\Delta \Phi(|^+,|^-)$ in the lab frame with a choice of basis

result: fraction of SM = 1.30 ± 0.14 (stat) $^{+0.27}_{-0.22}$ (syst)

Uncertainty source	Δf^{SM}
Data statistics	± 0.14
MC simulation template statistics	± 0.09
Luminosity	± 0.01
Lepton	± 0.01
Jet energy scale, resolution and efficiency	± 0.12
NLO generator	± 0.08
Parton shower and fragmentation	± 0.08
ISR/FSR	± 0.07
PDF uncertainty	± 0.07
Top quark mass	± 0.01
Fake leptons	+0.16/-0.07
Calorimeter readout	± 0.01
All systematics	+0.27/-0.22
Statistical + Systematic	+0.30/-0.26

Spin correlation measurement in CMS

- CMS 5 fb⁻¹ dilepton result (7 TeV)
 - \rightarrow result in agreement with SM predictions: $f_{SM} = 0.74 \pm 0.08(\text{stat.}) \pm 0.24(\text{syst.})$.
 - \rightarrow include measurements of some related asymmetry variables at high M_{ttbar}

• next steps ?

- → differential measurements (arXiv: 1003.3926)
 → other observables (arXiv: 1212.4888)

uncertainty Δf	absolute	relative (%)
statistic uncertainty	0.08	11%
MC stat uncertainty	0.07	9%
	experimental	
Lepton selection	0.01	1%
Lepton energy scale	0.01	1%
JES/JER	0.02	3%
all backgrounds	0.07	9%
PU	0.02	3%
b-tagging	0.01	1%
	tt modelling	
FastSim vs FullSim	0.06	8%
Fact. and renorm. scales	0.15	20%
τ decay	0.12	16%
top mass	0.02	3%
PDF	0.07	9%

unfolded distributions

Polarization in ATLAS

- In QCD, the top quark in ttbar production are produced unpolarized
- Polarization can be measured through the angular distributions of the top decay products
- ATLAS 4.7 fb⁻¹ result (7 TeV) in the lepton+jets channel
 - \rightarrow using the lepton angle in the helicity basis

$$W(\cos\theta_i) \propto 1 + \alpha_i p \cos\theta_i, \qquad f =$$

$$f = \frac{1}{2} + \frac{N(\cos\theta_l > 0) - N(\cos\theta_l < 0)}{N(\cos\theta_l > 0) + N(\cos\theta_l < 0)}$$

 $\alpha_{\ell} p = 2f - 1$. a: spin analysis power

 $\alpha_{\ell} p = -0.060 \pm 0.018(\text{stat})^{+0.046}_{-0.064}(\text{syst}).$

compatible with the expectation of p=0, f=0.5

Frédéric Déliot, top LHC-France meeting, 22 March 2013

Polarization in CMS

• CMS 5.0 fb⁻¹ result in the dilepton channel (7 TeV):

 \rightarrow using the lepton angle in the helicity basis

 $P_n = \frac{N(\cos(\theta_l^+) > 0) - N(\cos(\theta_l^+) < 0)}{N(\cos(\theta_l^+) > 0) + N(\cos(\theta_l^+) < 0)},$

unfolded:

 $P_n = -0.009 \pm 0.029 \pm 0.041$

compatible with the expectation of Pn=0

JES	lepton energy scale	Mt scan range	background	tī modeling	matching
0.020	0.001	0.024	0.009	0.014	0.004
Q ² scale	simulated M _t	b-tagging eff.	Trig eff. and lep ID	pile-up	Total
0.007	0.019	0.001	0.005	0.002	0.041

- next steps ?
 - \rightarrow more statistics
 - → BSM model exclusion

→ ...

ttbar asymmetry at the Tevatron

forward-backward asymmetry (dominated by qqbar -> ttbar)

→ top based or lepton based: $A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$

- some excess compared to SM predictions
 - → D0 lepton+jets, 5.4 fb⁻¹: ~ 3σ in the lepton based asymmetry, no mass dependence
 - → D0 dilepton, 5.4 fb⁻¹: $A_{FB}^{\ell} = (5.8 \pm 5.1(\text{stat}) \pm 1.3(\text{syst}))\%$ $A_{FB}^{\ell}(\text{predicted}) = (4.7 \pm 0.1)\%$
 - → CDF lepton+jets, 9.4 fb⁻¹: ~ 3σ excess at large M_{ttbar} invariant mass

D0 lepton+jets:

lepton-based (unfolded): $A_{\text{FB}}^{l} = (15.2 \pm 4.0)\%$ A_{FB}^{l} (MC@NLO)= $(2.1 \pm 0.1)\%$.

CDF lepton+jets ttbar-based \mathbf{A}_{FB} CDF Data, 9.4 fb⁻¹ $\alpha_{M_{-}} = (15.2 \pm 5.0) \times 10^{-4} (\text{GeV/c}^2)^{-1}$ 0.6 tt Prediction $\alpha_{M_{-}} = (3.4 \pm 1.2) \times 10^{-4} (\text{GeV/c}^2)^{-1}$ 0.4 0.2 400 450 500 550 600 650 700 750 Parton-Level M₊ (GeV/c²)

inclusive, unfolded: A_{FB} = 0.164 ± 0.045 (stat+syst) A_{FB} (SM) = 0.066 ± 0.020

Charge asymmetry in the lepton+jets channel in ATLAS

- the dominant gg->ttbar production at LHC is symmetric
 - \rightarrow smaller expected asymmetry than at the Tevatron
 - → is enhanced at large M_{ttbar}

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

• ATLAS result in lepton+jets: 1 fb⁻¹ (7 TeV)

inclusive, unfolded: $A_C = -0.019 \pm 0.028 \text{ (stat.)} \pm 0.024 \text{ (syst.)}$

Frédéric Déliot, top LHC	France meeting, 2	22 March 2013
--------------------------	-------------------	---------------

Source of systematic uncertainty on A_C	Electron channel	Muon channel	
Detector modelling			
Jet energy scale	0.012	0.006	
Jet efficiency and resolution	0.001	0.007	
Muon efficiency and resolution	< 0.001	0.001	
Electron efficiency and resolution	0.003	0.001	
b-tag scale factors	0.004	0.002	
Calorimeter readout	0.001	0.004	
Charge mis-ID	< 0.001	< 0.001	
b-tag charge	0.001	0.001	
Signal and background modelling			
Parton shower/fragmentation	0.010	0.010	
Top mass	0.007	0.007	
$t\bar{t}$ modelling	0.011	0.011	
ISR and FSR	0.010	0.010	
PDF	< 0.001	< 0.001	
W+jets normalization and shape	0.008	0.005	
Z+jets normalization and shape	0.005	0.001	
Multijet background	0.011	0.001	
Single top	< 0.001	< 0.001	
Diboson	< 0.001	< 0.001	
MC Statistics	0.006	0.005	
Unfolding convergence	0.005	0.007	
Unfolding bias	0.004	< 0.001	
Luminosity	0.001	0.001	
Total systematic uncertainty	0.028	0.024	

Charge asymmetry in the lepton+jets channel in CMS

- result with 5 fb⁻¹ (7 TeV)
- additional differential measurements
 - → vs M(ttbar), y(ttbar), pt(ttbar)

inclusive, unfolded: $A_{\rm C} = 0.004 \pm 0.010 \, (\text{stat.}) \pm 0.011 \, (\text{syst.}).$

Systematic uncertainty	Shift (±) in inclusive A_C
JES	0.003
JER	0.002
Lepton ID/sel. efficiency	0.006
Generator	0.001
Hadronization	0.001
Q ² scale	0.002
PDF	0.002
Pileup	< 0.001
W + jets	0.004
Multijet	0.001
Migration matrix	0.002
Model dependence	0.007
Total	0.011

• next steps ?

- → more statistics at large Mttbar, measurement in space space with enhanced SM prediction
- → goal: to get sensitive to the SM prediction (the prediction for 13 TeV will be even smaller ...)
- → collider independant observable (arXiv:1205.1898)

Frédéric Déliot, top LHC-France meeting, 22 March 2013

Charge asymmetry in the dilepton channel in ATLAS

- Complementary to the measurement in the lepton+jets channel:
 - \rightarrow also sensitive to polarization effects
- Drawbacks
 - → more difficult to reconstruct the ttbar final state
- ATLAS 4.7 fb⁻¹ result (7 TeV)

→ ttbar-based and lepton-based inclusive and unfolded

 $A_{\mathrm{C}}^{\ell\ell} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)},$

 $A_{\rm C}^{\ell\ell} = 0.023 \pm 0.012 \,(\text{stat.}) \pm 0.008 \,(\text{syst.}),$ $A_{\rm C}^{t\bar{t}} = 0.057 \pm 0.024 \,(\text{stat.}) \pm 0.015 \,(\text{syst.}),$

			-
	ee	еµ	μμ
Signal and background modeling			
Signal generator	0.014	0.009	0.002
ISR and FSR	0.008	0.002	0.018
Parton shower/fragmentation	0.001	0.001	0.001
PDF	0.001	< 0.001	< 0.001
Z+jets	0.001	0.006	0.002
Diboson	< 0.001	< 0.001	< 0.001
Single top	< 0.001	< 0.001	< 0.001
Multijet background	0.012	0.010	0.001
Detector modeling			
Jet efficiency and resolution	0.007	0.001	0.005
Jet energy scale	0.003	0.002	0.006
Muon efficiency and resolution	0.004	0.003	0.005
Electron efficiency and resolution	0.013	0.006	0.002
Calibration	0.004	0.001	0.002
Luminosity	< 0.001	0.001	< 0.001
Total	0.028	0.017	0.021

Charge asymmetry in the dilepton channel in CMS

• result with 5 fb⁻¹ (7 TeV)

→ inclusive (unfolded): $A_C = 0.050 \pm 0.043(\text{stat})^{+0.010}_{-0.039}(\text{syst})$

→ differential measurements: vs M(ttbar), y(ttbar), pt(ttbar)

• next steps ?

- \rightarrow more statistics inclusive and differentially
- → 2D ttbar vs lepton based
- → dependency vs lepton pt (arXiv:1212.4003)

Differential measurements in ATLAS

• Differential measurements important to:

→ tune MC

→ search for BSM physics (resonant or non resonant)

• ATLAS 2 fb⁻¹ result in the lepton+jets channel (7 TeV)

Differential measurements in CMS

- CMS results with 12 fb⁻¹ (lepton+jets and dilepton 8 TeV)
 - → unfolded measurements in good agreement with predictions

- next steps ?
 - \rightarrow include in MC tuning
 - \rightarrow measurements in visible phase space
 - → BSM model exclusion

Discussion