Search for tt resonances @ Atlas and CMS

Top LHC-France meeting

Samuel Calvet (LPC Clermont-Ferrand)

With help from Roberto Chierici and Viola Sordini

tt resonance searches

- Many models predict new heavy resonances (Z', g_{κκ}, G*, H⁰)
 - They may decay predominantly into ttbar (because of the large top mass)
- Both Atlas and CMS have results on full-hadronic, semi- and di-leptonic final states
 - French groups mainly involve in semi-leptonic (e or mu)
 - \rightarrow the talk will be focused on this channel
- Comparison of the analyses Atlas ↔ CMS is highly instructive
 - Strategy
 - Selection
 - Background modeling
 - Reconstruction
 - Systematics uncertainties
 - Limits

ATLAS-CONF-2012-136

CMS: JHEP 12 (2012) 015

- Detector resolution on mtt O(10%)
- Sequential SM topcolor Z' (Γ /m=1.2% and 10%)
 - Pythia 8
 - Pythia 6
- KK gluon (Γ/m=15%)
 - Pythia 8
 - Madgraph 5

Backgrounds

CMS / Atlas

SM ttbar

- Irreducible background
- Madgraph5 + Pythia6 + CTEQ6L, k-factor from MCFM (N?NLO)
- MC@NLO + Herwig + CT10, k-factor from HATOR (NNLO)
- W+jets
 - Madgraph5 + Pythia6 + CTEQ6L
 - Normalized to NNLO
 - Alpgen + Herwig + CTEQ6L1
 - Normalized thanks W charge asymmetry
 - Heavy flavor fraction from the data
- Multijets:
 - Data-driven ("template")
 - Data-driven ("matrix-method")

Strategies

- Both experiments divides the search into 2 regimes
 - Low tt mass ("threshold" or "resolved" analysis)
 - High tt mass ("boosted" analysis)
- CMS uses the threshold analysis up to m_z=1TeV then uses the boosted one
- Atlas uses both analyses on the full range
 - Events that do not pass the boosted selection are considered by the resolved one
 - Sensitivity gain in the intermediate regime where both selections have some sensitivity

CMS / Atlas

- Anti-kt 0.5 / 0.4 / 1.0
 - $|\eta_{0.5}| < 2.4, |\eta_{0.4}| < 2.5, |\eta_{1.0}| < 2.0$
 - Threshold: pT>30 GeV
 - Boosted: pT>25GeV
 - pT_{0.4}>25 GeV, pT_{1.0}>350 GeV
- Btagging:
 - 70% efficient on b (only used on anti-kt 0.4 jets)

Objects: leptons

CMS / Atlas

- Electrons
 - |η|<2.47, |η|<2.5</p>
 - pT>25GeV, $\Delta R(e, jet)>0.4$, isolated
 - Threshold: pT>30GeV, isolated
 - Boosted: pT>70GeV, no isolation requirement, (ΔR(e, jet)>0.5 or pT^{rel}(e, jet)>25GeV)
- Muons
 - |η|<2.5, |η|<2.1
 - pT>25GeV, isolated
 - Boosted: ΔR(μ, jet)>0.1
 - Threshold: pT>20GeV, isolated
 - Boosted: pT>42GeV, no isolation requirement, ($\Delta R(\mu, jet)$ >0.5 or pT^{rel}(μ , jet)>25GeV)

CMS:

- ($\Sigma = E_T \text{ in } R=0.4 \text{ cone})/p_T^{\text{lepton}} < 12.5\% / 10\% \text{ for muons/electrons}$
- Reminder: no isolation for the boosted selection
- Atlas:
 - ($\Sigma P_T^{\text{track}}$ in R=x cone)/ $p_T^{\text{lepton}} < 5\%$ x=10GeV/ p_T^{lepton}
 - Small cone size for the boosted regime

Triggers

CMS / Atlas

- Threshold/resolved:
 - e
 - Single isolated e (25GeV) + ≥3jets (30GeV)
 - Single e ($20 \rightarrow 22$ GeV), sometime isolated
 - μ
 - Single isolated μ (17GeV) + \geq 0 \rightarrow 3jets (30GeV)
 - Single μ (18GeV)
- Boosted
 - e
 - Single e (65GeV), no isolation (sometime prescaled -0.6fb⁻¹)
 - Fat jet (240GeV)
 - μ
 - Single μ (40GeV), no isolation
 - Fat jet (240GeV)

"threshold"/"resolved" selections

CMS / Atlas

CMS

- 1 lepton (30/20GeV)
- ≥3 jets (50GeV)
- pT(jet1)>70GeV
- MET>20GeV
- 4 categories * 2 (e/µ):
 - 3 jets and ≥ 1 b-tagged jet
 - ≥4 jets and 0 b-tagged jet
 - \geq 4 jets and 1 b-tagged jet
 - \geq 4 jets and \geq 2 b-tagged jets

Atlas

- 1 lepton (25GeV)
- ≥4 jets (25GeV)
 - or +≥3 jets (25GeV), if one jet has mass>60GeV (→ semi-boosted)
- ◆ e: MET>25GeV, M_T^w>25GeV
- μ: MET>20GeV, MET+M_T^W>60GeV
- Not selected by the "boosted" selection
- ◆ ≥1 b-tagged jet

"boosted" selections

CMS / Atlas

CMS

- 1 lepton (70/42GeV)
- ◆ ≥2 jets (50GeV)
- MET+P_T^{lepton}>150GeV

♦ e:

- pT(jet1)>150GeV
- MET>50GeV

 $-\frac{1.5}{75 \,\text{GeV}} E_{\text{T}}^{\text{miss}} + 1.5 < \Delta \phi \{(\text{e or } j), E_{\text{T}}^{\text{miss}}\} < \frac{1.5}{75 \,\text{GeV}} E_{\text{T}}^{\text{miss}} + 1.5$

- pT(jet1)>250GeV
- 2 categories * 2 (e/µ):
 - 0 b-tagged jet
 - ≥1 b-tagged jet

Backgrounds normalized to data

Atlas

- 1 lepton (25 GeV)
- ♦ e: MET>25GeV, M_T^W>25GeV
- μ: MET>20GeV, MET+M₁^W>60GeV

▶ ≥1 fat jet

- pT>350GeV, mass>100GeV, $\sqrt{d12}$ >40GeV
- ∆φ(I,jet_{1.0})>2.3
- ◆ ≥1 jet
 - ≥1 b-tagged jet
 - ∆R(jet_{0.4}, jet_{1.0})>1.5

Selection efficiencies

CMS:

semileptonic events

- → inclusive
- Resolved : 16 to 35% (0.5TeV to 1TeV) \rightarrow 7 to 15%
- Boosted : 13 to 24% (1TeV to 3TeV) \rightarrow 5 to 11%
- Atlas:

- Assume MET=neutrino's pT, need to recover the p_7
- Neutrino p_7 solution inferred from W mass constraint ==> quadratic equation
 - There are 2 solutions
 - Use both solutions, and test them in a χ^2
 - There is no solution
 - Boosted:
 - Real part of the complex solution
 - Minimal change of MET to get real solution
 - Threshold/resolved:
 - Minimal change of MET to get real solution

Reconstruction – Threshold/resolved m_# CMS / Atlas

- CMS:
 - If \geq 4 jets: χ^2
 - top masses, hadronic W mass, pT of tt system,
 - Σ pT of 4 selected jets / Σ pT of all jets
 - If 3 jets:
 - Use them
- Atlas:
 - If no high mass jet:

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{t_{h}-W}}{\sigma_{t_{h}-W}}\right]^{2} + \left[\frac{m_{j\ell\nu} - m_{t_{\ell}}}{\sigma_{t_{\ell}}}\right]^{2} + \left[\frac{(p_{\mathrm{T},jjb} - p_{\mathrm{T},j\ell\nu}) - (p_{\mathrm{T},t_{h}} - p_{\mathrm{T},t_{\ell}})}{\sigma_{\mathrm{diff}p_{\mathrm{T}}}}\right]^{2}$$

- If high mass jet
 - It plays the role of the hadronic W

Reconstruction – Threshold/resolved m_# CMS / Atlas

- CMS:
 - χ^2 (top masses)
 - Use 1, 2 or 3 jets for the hadronic tops
 - $pT^{top had} > 100GeV$
 - X² <8 (50% for signal, 10% for W+jets)
- Atlas:
 - Fat jet + lepton + neutrino + narrow jet
 - Narrow jet: closest to lepton

CMS / Atlas

Reconstruction – boosted m_{tt}

ATLAS Preliminary Simulation,√s=7 TeV __ m_{g_кк}=1.3 TeV m_z=1.3 TeV ---- m_{z'}=2.0 TeV ••••• m_{z'}=3.0 TeV 0.5 1.5 2.5 3 3.5 2 Reconstructed tt mass [TeV] ATLAS Preliminary - Data □tī Single top $L = 4.66 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}$ Multi-jets Z+jets Diboson μ + jets

0.5

2.5

2

1.5

3 <u>3.5</u> m_# [TeV]

Systematic uncertainties

CMS

- tt: 15%
- W+jets:
 - +lights:
 - 50% correlated with Z+jets
 - 50% uncorrelated with Z+jets
 - + heavy flavors
 - 100%
- Multijets: ???
- Jet energy reso.: up to 20%

Atlas

- > tt:
 - 11%
 - Higher order QCD corr (10% -@low mtt- to 20% - @high mtt-)
- W+jets:
 - Resolved: 10.5%
 - Boosted: 19/18%
- Multijets: 60% + shape
- PDF: up to 50% @2TeV
- Fat jet JES: 17% on boosted yields

Limits

CMS:

- Modified frequentist CLs
- Bin width chosen so the statistical error <30%</p>
- Ζ' (Γ/m=1.2%), Ζ' (Γ/m=10%), g_{κκ} (Γ/m=10%)
- Atlas:
 - searches for the presence of excess/deficits (BumpHunter algorithm). If not \rightarrow set limits
 - Bayesian limits
 - Bin width chosen to fit the mtt resolution
 - Ζ' (Γ/m=1.2%), g_{κκ} (Γ/m=15%)

19

Conclusion

- Similar strategy (resolved ↔ boosted)
 ... but very different selections
 - CMS: splits the analysis in many categories
 - Atlas: uses of fat jet
- Similar acceptance and reconstruction (at least for the "resolved")
- Similar limits

Backup