Tetratop production at the LHC An effective field theory vision

Benjamin Fuks

CERN / IPHC Strasbourg / U. Strasbourg Supported by the French ANR 12 JS05 002 01 BATS@LHC

Based on arXiv:1212.3360 (with S. Calvet, P. Gris & L. Valéry)

Top LHC France 2013 meeting @ IPN Lyon March 21-22, 2013

Outline.

- The bottom-up approach for new physics at the LHC
- Effective field theories for the top sector and simulation setup
- Sgluon-induced tetratop production at the LHC
- Summary

The top-down approach.

Motivations.

•0

- * Theoretical ideas.
 - ▶ e.g., symmetry principles as for Grand Unified Theories.
- * Addresses one or several issues of the Standard Model.
 - ▶ e.g., hierarchy problem as in Universal Extra Dimensional models.
- * Predictions can be made through perturbation theory.

```
► e.g., test at colliders.
```

Benchmark scenarios.

- * Many **new parameters** enter in new theories:
 - ► e.g., hundreds of parameters in supersymmetric models.
- * Experimental data constrains some of them.
 - ► e.g., electroweak precision observables.
- * Viable benchmark scenarios.
- Signatures at colliders.
 - * Driven by the benchmark scenarios.
 - ightharpoonup e.g., same sign leptons \Leftrightarrow new Majorana state.

The top-down approach: limitations.

- Signatures at colliders.
 - Not typical from a given benchmark of a specific model.
 - ► Various benchmarks for gravity-mediated supersymmetry breaking.
 - * Not typical from a specific model.
 - ► Extra Dimensions and supersymmetry imply both cascade decays.
- Theory and data.
 - * How to relate observations to a given model/benchmark?
 - * How to disentangle models and benchmarks?
- Bias in the expectations.
 - Are we missing some signatures in those investigated?
 - ► Phenomenologically and experimentally.

The bottom-up approach: we start from a signature.

Outline.

- Effective field theories for the top sector and simulation setup

Multiple top quark production at hadron colliders.

- Production of four top quarks in the Standard Model.
 - Phase-space suppressed.
 - Inclusive cross sections: @ 7 TeV: 0.3 fb; @ 8 TeV: 0.7 fb [@leading-order].
 - \Rightarrow Multitop events (at a large rate) \Rightarrow new physics.
- How to model four top production in a model independent way?
 - * Let us be pragmatic....
 - * We start from a model predicting enhanced four top production.
 - * Interface between the top-down and bottom-up approaches.

Multiple top quark production at hadron colliders.

Theoretical framework inspired by *R*-symmetric supersymmetry.

We will consider tops induced by sgluon decays.

- Sgluon fields also appear in:
 - * N=1/N=2 hybrid supersymmetric theories.
 - * Vector-like confining theories (colorons).
 - * Extra-dimensional theories (with $D \ge 6$).
- Other models predict tetratop signatures (non-sgluon induced).
 - * Vector-like fermions
 - * Compositness models.
- The sgluon analyses presented here can be applied to any of these.
- The question of disentangling them is not addressed here.
 - ⇒ Might be interesting?

Multiple top quark production at hadron colliders.

- Theoretical framework inspired by *R*-symmetric supersymmetry.
 - Predict a scalar color-octet field, the sgluon.
 - * QCD couplings to gluons.

$$\mathcal{L} = \frac{1}{2} D_\mu \sigma^a D^\mu \sigma_a - \frac{1}{2} m_\sigma^2 \sigma^a \sigma_a \quad \text{with} \quad D_\mu \sigma^a = \partial_\mu \sigma^a + g_s \ f_{bc}^{\ a} \ G_\mu^b \ \sigma^c$$

Effective couplings to quarks and gluons through supersymmetric loops.

$$\begin{split} \mathcal{L} &= \sigma^a \bar{d} \, T_a \Big[a_d^L P_L + a_d^R P_R \Big] d + \sigma^a \bar{u} \, T_a \Big[a_u^L P_L + a_u^R P_R \Big] u \\ &+ a_g \, d_a^{\ bc} \sigma^a \, G_{\mu\nu b} \, G^{\mu\nu}{}_c + \mathrm{h.c.} \; . \end{split}$$

- \diamond Quark antiquark sgluon $\Rightarrow \mathcal{O}\left(\frac{m_q}{M_{\text{SUSY}}}\right)$.
- \diamond Gauge boson pair sgluon $\Rightarrow \mathcal{O}\left(\frac{1}{M_{\text{STIGY}}}\right)$.
- ⇒ Important for the top quark.

Benchmark scenarios

- Few free parameters.
 - ⇒ very good.
- Two classes of scenarios.
 - Flavor-universal sgluon-quark-quark couplings.
 - * Top-only sgluon-quark-quark couplings.

Parameters	Scenarios of type I	Scenarios of type II
ag	$1.5 imes 10^{-6} \; { m GeV}^{-1}$	$1.5 imes10^{-6}~ ext{GeV}^{-1}$
$(a_u)^3_3$	$3 \cdot 10^{-3}$	$3 \cdot 10^{-3}$
$(a_u)^3{}_1 = (a_u)^1{}_3$	$3 \cdot 10^{-3}$	0
$(a_u)^3{}_2 = (a_u)^2{}_3$	$3 \cdot 10^{-3}$	0
m_{σ}	[200-1000] GeV	[400-1000] GeV

- Sub-TeV sgluons.
- Order of magnitude of the couplings.
 - Inspired from TeV-scale supersymmetric scenarios.
 - Orders of magnitude compatible with each other.

Simplified model for sgluon production and decay

Signatures.

* Sgluon pair-production.

* Decays to 2, 3 or 4 top quarks.

In numbers...

Scen.	m_{σ} [GeV]	$Γ_σ$ [MeV]	$BR(t\bar{t})$	$BR(tj/\bar{t}j)$	BR(gg)	$\sigma_{ m tot}$ [fb]	K
I	200	0.012	-	80%	20%	98600	1.6
I	300	0.105	-	92.3%	7.7%	9802	1.6
I	400	0.219	4.4 %	86.9%	8.7%	1625	1.7
II	400	0.029	33.3%	-	66.7%	1025	1.7
I	500	0.350	9.8 %	79.5%	10.1%	358.1	1.8
II	300	0.072	47.8%	-	52.2%	330.1	1.0
I	600	0.485	12 %	75%	13%	94.9	1.8
II	000	0.124	48%	-	52%	94.9	1.0
I	700	0.628	13.2 %	70.5%	16.3%	28.4 1.9	1.0
II	700	0.185	44.7%	-	55.3%		1.9
I	800	0.779	13.5 %	66.9%	19.6%	9.26	2.0
II	600	0.252	41%	-	59%	9.20	2.0
:	:	:	:	:	:	:	:
		•		•			

- * Large branching to top pairs possible.
- * Large cross sections expected.

Simulation setup.

Based on two papers:

- A comprehensive approach for new physics simulation [Christensen, de Aquino, Degrande, Duhr, BenjF, Herquet, Maltoni, Schumann (EPJC '11)].
- * Beyond the MSSM: from theory to phenomenology [BenjF (IJMPA '12)].

The framework

- Implementation of the simplified models in FEYNRULES. [Christensen, Duhr (CPC '09); Alloul, Christensen, Degrande, Duhr, BenjF (in prep)]
- UFO files. [Degrande, Duhr, BenjF, Grellscheid, Mattelaer, Reiter (CPC '11)]
- Sevent generation: MADGRAPH 5. [Alwall, Herquet, Mattelaer, Stelzer (JHEP '11)]
- Parton showering and hadronization with PYTHIA. [Sjostrand, Mrenna, Skands (JHEP '06; CPC '08)]
- **5** Fast detector simulation with DELPHES. [Ovyn, Rouby, Lemaitre ('09)]
- Openion of the property of
 - * Home-made program using the MCLIMIT package. [http://www-cdf.fnal.gov/~trj/mclimit/production/mclimit.html]
 - * For future analyses ⇒ MADANALYSIS 5 [Conte, BenjF, Serret (CPC '13)].

Outline

- Sgluon-induced tetratop production at the LHC

Standard object selection

- Jets: $E_{\tau}^{(\mathrm{cal.})} > 20$ GeV; $\eta < 2.5$.
- b-tagging: efficiency: 60%; mistag: 10% (charm) and 1% (light).
- Jet removal: if $\Delta R(j, e^{\pm}) < 0.1$.
- Lepton removal: if $\Delta R(\ell^{\pm}, j) \leq 0.4$.

Single lepton analysis (1)

- Selection cuts.
 - * One single lepton: $p_T \ge 25$ GeV.
 - * Missing energy: $\not E_{\tau} > 40 \text{ GeV}$.
 - * W transverse mass: $M_{\tau}^{W} > 25$ GeV.
 - ⇒ good control of the non-simulated multijet backgrounds.
 - * Jet multiplicity cuts: $N_i \ge 8$; $N_b \ge 2$; $p_T^j \ge 25$ GeV.
- Main background $\equiv t\bar{t} + \text{jets}$.
- **Large hadronic activity for the signal**: use H_T as a discriminating variable.

Single lepton analysis (2)

- Left plot: after single lepton $+ \not\!\! E_T + M_T^W$ selection:
- Right plot: after the multijet selection:

Multilepton analysis (1).

Selection cuts.

- * $N_{\ell} > 2$ leptons with $p_{\tau}^{\ell} > 20$ GeV.
- * $m_{\ell\ell} > 50 \text{ GeV} \Rightarrow \text{rejection of hadronic resonances}.$
- * Missing energy: $\not E_T \ge 40 \text{ GeV} \Rightarrow \text{good rejection of the } Z \text{ background.}$
- * Jet multiplicity cuts: $N_i \ge 5$; $N_b \ge 3$; $p_T^j \ge 25$ GeV.
- Main bgd $\equiv t\bar{t} + V(V') + \text{jets}$.
- **Large hadronic activity for the signal**: use H_T as a discriminating variable.
- Statistically hard (for two examples of sgluon scenarios):

Selections	$m_{\sigma}^{I}=400~{ m GeV}$	$m_{\sigma}^{II}=800\;{ m GeV}$	Backgrounds
$N_\ell \geq$ 2, $p_T^\ell \geq$ 20 GeV	11.33 ± 0.33	7.90 ± 0.24	$(1.722 \pm 0.002) \cdot 10^7$
$m_{\ell\ell} \geq 50 \; {\sf GeV}$	10.42 ± 0.32	7.56 ± 0.22	$(1.717 \pm 0.002) \cdot 10^7$
<i>⊭</i> _{<i>T</i>} ≥ 40 GeV	8.78 ± 0.29	7.03 ± 0.21	$(1.598 \pm 0.004)\!\cdot\! 10^5$
$N_j \geq 5$, $p_T^j \geq 25$ GeV	7.50 ± 0.27	6.60 ± 0.20	$(8.11 \pm 0.06) \cdot 10^3$
$N_b \geq 3$	1.61 ± 0.13	1.93 ± 0.11	$(1.88 \pm 0.06) \cdot 10^2$
Same sign dilepton	0.69 ± 0.08	0.82 ± 0.07	10.3 ± 1.5

Multilepton analysis (2).

- Multijet background + fakes.
 - * If $N_{\ell} = 2$: we ask for same sign leptons.
 - After cuts, multijet is 10 x larger than the rest (ATLAS-CONF-2012-130).
 - * Two considered cases (the truth should be in between).
 - ▶ Without multijet + fakes .
 - ▶ Without multijet + fakes but after multiplying the bgd by 10.

Extracting the LHC sensitivity.

	Single lepton analysis	Multilepton analysis	Multilepton analysis	
		Withthepton analysis	(background $ imes 10$)	
S-I	-	-	-	
S-II	640 ⁺⁴⁰ ₋₃₀ GeV	650 ⁺³⁰ ₋₄₀ GeV	520 ⁺⁵⁰ ₋₁₁₀ GeV	

- Gray bands: theory curves for all our scenarios (with scale uncertainties).
- Expectations for 20 fb⁻¹ @ 8 TeV (using MCLIMIT).

Outline

- Summary

Summary and perspectives.

- Exploiting the FeynRules UFO MadGraph Pythia Delphes chain.
 - * We a develop simplified model.
 - * Investigate its phenomenology at the LHC.
- Sgluon-induced tetratops.
 - * Sgluon masses up to 525-650 GeV can be probed.
- The future (from the phenomenology side):
 - * Possible use of MadAnalysis 5 ⇒ user-friendly and efficient framework.
 - * Other top-down-inspired model leading to tetratops?
 - * Les Houches 2013 is approaching ⇒ perfect for TH-EXP works.
 - * Nothing in my mind for the moment ⇒ let's discuss!
- The future (from the CMS and ATLAS side):
 - Please speak up!