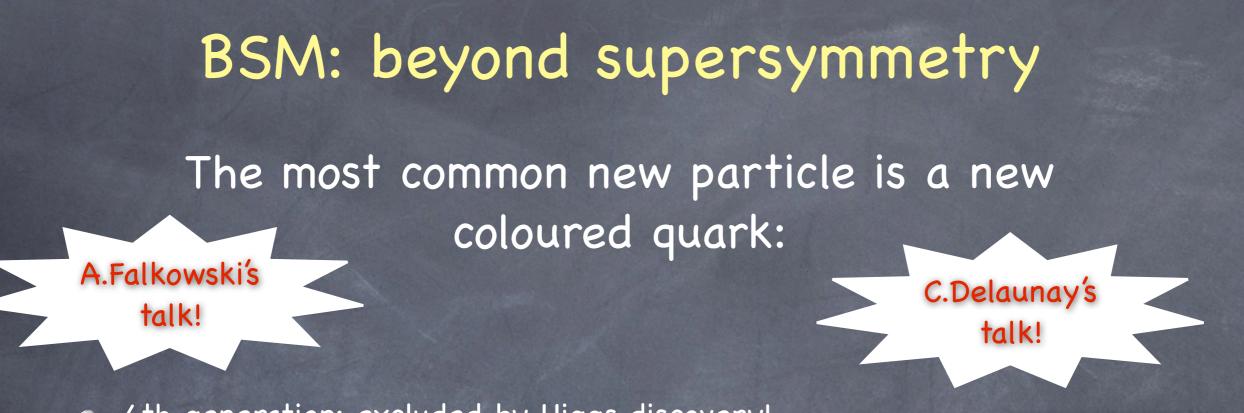
Model Independent Search of Vector-like Quarks, aka Top-partners

Giacomo Cacciapaglia IPN Lyon

> Top-LHC France 2013 22 mars



- 4th generation: excluded by Higgs discovery!
- Little Higgs: massive top partners responsible for the cancellation of quadratic divergences in the Higgs mass.
- Extra dimensions: recurrences of SM quarks, propagating in the bulk.
- Composite Higgs: massive top arises as a composite state, accompanied by heavier resonances.
- Extended gauge symmetries: new fermions needed to complete SM quark representations.

What is a VL quark?

They have a Dirac mass without the Higgs.

 $\mathcal{L}_{\text{mass}} \sim -M \left(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L \right)$

They couple to SM quarks via Yukawa-type interactions.

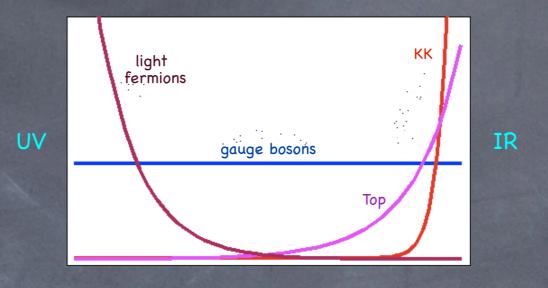
$$\mathcal{L}_{\text{Yuk}} \sim -\frac{\lambda v}{\sqrt{2}} \left(\bar{q}_L \psi_R + \bar{\psi}_R q_L \right) \quad \text{or} \quad \left(\bar{\psi}_L q_R + \bar{q}_R \psi_L \right)$$

The couplings depend on the representation of SU(2) – few possible choices!

 $\mathcal{L}_{\text{singlet}} \sim \frac{g}{\sqrt{2}} V_L^{4i} W_\mu^+ \bar{t}'_L \gamma^\mu d_L^i + \frac{g}{2\cos\theta_W} V_L^{4i} Z_\mu \bar{t}'_L \gamma^\mu u_L^i + h.c.$

$$\mathcal{L}_{\text{doublets}} \sim \pm \frac{g}{2\cos\theta_W} V_R^{4i} Z_\mu \, \bar{t}'_R \gamma^\mu u_R^i + h.c.$$

Models: composite Higgs



Composite top implies large corrections to the Z couplings of the left-handed b, which are constrained at the 0.1% level!

Solution:

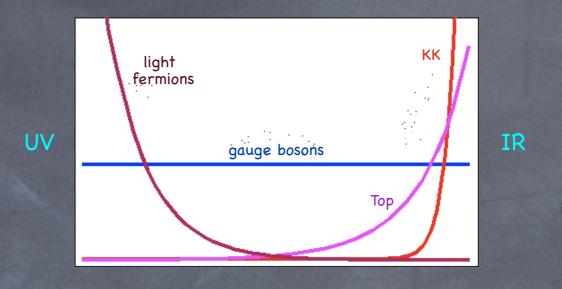
$$(\mathbf{2,2})_{2/3} \quad Q_L = \begin{pmatrix} t_L & X \\ b_L & T \end{pmatrix}$$

(1,1)_{2/3} $Q_R = t_R$

(2,2)₀
$$H = \begin{pmatrix} \phi_0^* & \phi^+ \\ -\phi^- & \phi_0 \end{pmatrix}$$

 $\mathcal{L}_{\text{Yukawa}} = y_t \operatorname{Tr} \left(\bar{Q}_L \cdot H \right) t_R = y_t \left(\phi_0^* \bar{t}_L t_R + \phi_0 \bar{T} t_R + \dots \right)$

Models: composite Higgs



0

0

(2,2)2/3

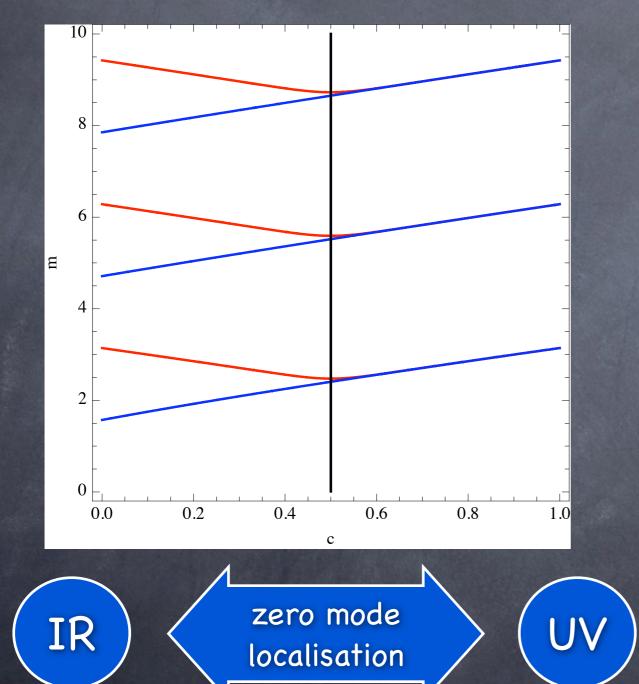
(1,1)2/3

 $(2,2)_{0}$

the

 $R \equiv$

Models: composite Higgs



- with zero mode (SM)

- without zero mode

For strongly IR localised fields (top and partners) there are light states appearing in the spectrum!

Lightest states are a SU(2)⊥ doublet with hypercharge 7/6!

Thus, many theorists have appetite for VL quarks...

CMS Menu, 7 TeV

Prices (GeV)

b' pair, 100%
$$\mathcal{W}t$$

 $l^{\pm}l^{\pm}+ \ge 4$ jets 611
 $l(\text{high } p_T)+ \ge 4$ jets $(1b) + \text{ kin cuts}$ 675
b' pair, 100% $\mathcal{Z}b$
 $l^+l^-(Z)+ \ge 2$ jets $(2b)$ 550

t pair, 100% Wb $l^+l^- + \ge 2 \text{ jets}(2b)$ $l(\text{high } p_T) + \ge 4 \text{ jets}(1b) + \text{ kin cuts}$ 560

X pair, 100% Wt $l^{\pm}l^{\pm}+ \ge 4 \text{ jets} + H_T$ 645

ATLAS Menu, I Te	Prices (GeV)
b', X pair, 100% $\mathcal{W}t$ $l^{\pm}l^{\pm}+\geq 2 \text{ jets } (1b)+H_T+MET$	Jª 1ª±Ces ((J≠e V) 670
i' pair, 100% $\mathcal{W}b$ $l (high p_T) + \geq 3 \text{ jets} + MET$	656
t' pair, 50% Wb	500
single q'jet, 100% $\mathcal{W}q$ $l \nu (W) + 2 \text{ jets}(1 \text{ forward})$	b': 1120 X: 1420
single q'jet, 100% $\mathbb{Z}q$ $l^+l^-(Z) + 2 \text{ jets}(1 \text{ forward})$	t': 1080

G.C., A.Deandrea, N.Gaur, D.Harada, Y.Okada, L.Panizzi 1007.2933, 1108.6329, ...

Top partner t':

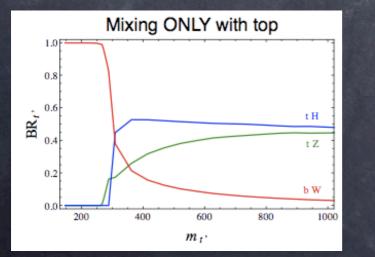
branchings are never 100% in one channel!

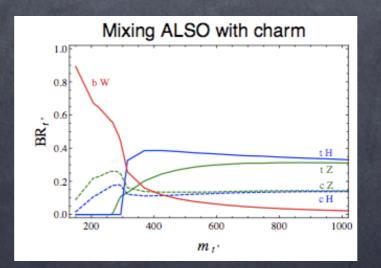
t'	Wb	Zt	ht
Single, Triplet Y=2/3	50%	25%	25%
Doublets, Triplet Y=-1/3	~ 0%	50%	50%

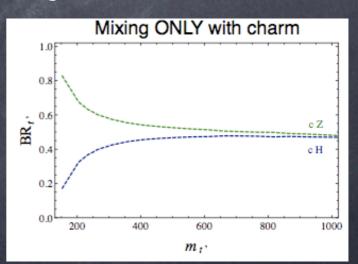
EQUIVALENCE THEOREM: at large VL masses, BR(Zt) = BR(ht)!!!

> decays into light quarks may not be negligible!

Flavour bounds: however, BRs are NOT proportional to the mixing matrices nor to the Yukawa couplings!





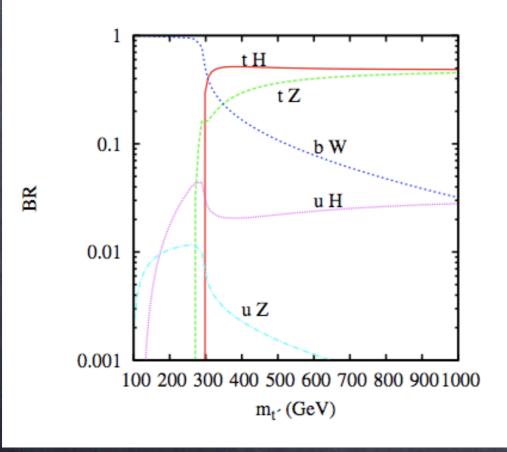


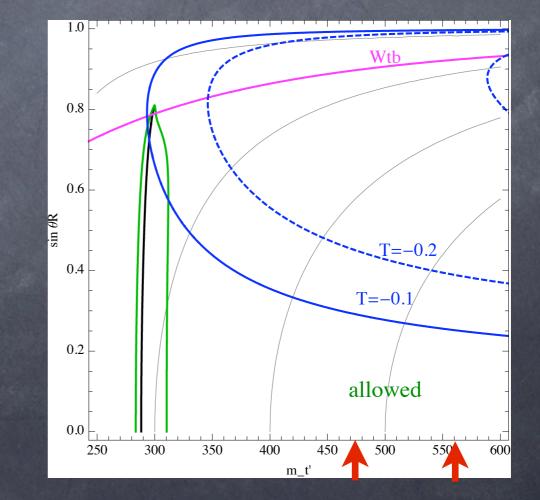
LHC bounds on the t'

 $t'\bar{t}' \to W^+ b \, W^- \bar{b} \to b \, \bar{b} \, l \, \nu \, j \, j$

Nominal bounds: 560 (CMS 5/fb) (assuming 100% Branching Ratio) $t'\overline{t'} \to Zt Z\overline{t} \to l^+ l^- t X$

Nominal bounds: 475 (CMS 1/fb) (assuming 100% Branching Ratio)





Exotic X_{5/3}:

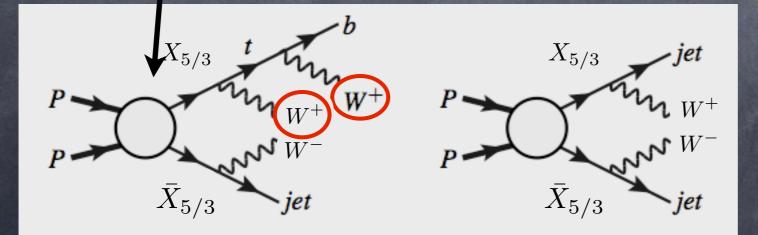
Example: same sign dilepton in X decays



Assuming 100% decays into Wt

ss dilepton from W's large number of jets (4+)

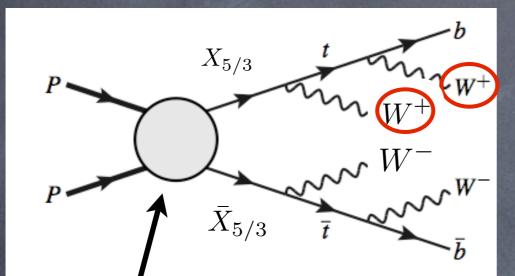
Different efficiencies!!!!



Decays in W q should also be included in the same search!

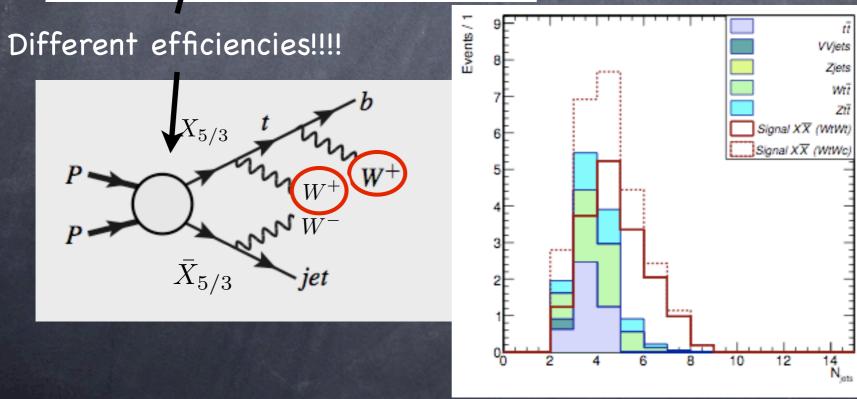
Exotic X_{5/3}:

Example: same sign dilepton in X decays



Assuming 100% decays into Wt

ss dilepton from W's large number of jets (4+)

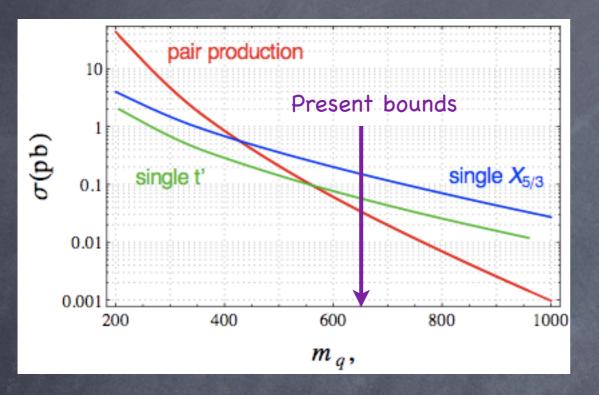


We propose an alternative cut on HT!

G.C., A.Deandrea, L.Panizzi, S.Perries, V.Sordini 1211.4034

Relevance of Single Production!

Pair production is "model independent", being dominated by QCD!



Single production: $pp \rightarrow q' + \{q, V, H\}$ $q_i \longrightarrow q' \quad q_i \longrightarrow q' \quad g \mod q' \quad g \mod q' \quad g \mod q' \quad g \mod q' \quad q' \quad q \longrightarrow V \quad q$

Couplings proportional to the mixing i.e. sensitive to the Yukawa couplings!

- Potential window to size of Yukawa couplings/mixing!
- Potentially relevant at high masses.
- It needs to be included in a consistent way (flavour bounds!!!)

Exotic X_{5/3}:

Model independent, complete parametrisation of the couplings:

$$\mathcal{L} = \kappa_X \left\{ \sqrt{rac{\zeta_i}{\Gamma_W^0}} rac{g}{\sqrt{2}} \left[ar{X}_{L/R} W^+_\mu \gamma^\mu u^i_{L/R}
ight]
ight\} + h.c. \,.$$

G.C., M.Buchkremer, A.Deandrea, L.Panizzi in preparation

$$BR(X \to W^+ u/c) = \frac{(1-\zeta_3)}{1-\zeta_3 \delta_W^t}, \quad BR(X \to W^+ t) = \frac{\zeta_3 (1-\delta_W^t)}{1-\zeta_3 \delta_W^t}.$$

Single production can be correlated to Branching ratios:

$$egin{aligned} &\sigma(Xar{t}) &= &\kappa_X^2\left(\sum_{i=1}^2\zeta_i\;ar{\sigma}_i^{Xar{t}}
ight), \ &\sigma(Xjet) &= &\kappa_X^2\left(\sum_{i=1}^3\zeta_i\;ar{\sigma}_i^{Xjet}
ight), \ &\sigma(XW^-) &= &\kappa_X^2\left(\sum_{i=1}^2\zeta_i\;ar{\sigma}_i^{XW}
ight). \end{aligned}$$

		Х			$ $ \bar{X}					
	i = 1	i = 2	i = 3		i = 1	i = 2	i = 3			
$X\overline{t}$	3,630 fb	52.8 fb	$9.7~{\rm fb}$	$\bar{X}t$	181 fb	52.8 fb	3.4 fb			
$\overline{X\overline{t}\overline{t}}$	-	-	1.3 fb	$\bar{X}tt$	-	-	1.3 fb			
X jet	$94,350~\mathrm{fb}$	$4,060~{\rm fb}$	-	\bar{X} jet	4,600 fb	$1,780~\mathrm{fb}$	-			
XW^-	$4,430~{\rm fb}$	$74.6~{\rm fb}$	-	$\bar{X}W^+$	241 fb	$74.6~{\rm fb}$	-			

Pair: 170 fb

Outlook

- VL quark pheno can be described in terms of a few parameters: t', b', X(5/3), Y(-4/3)...
- Many neglected final states need to be analysed.
- Tool to extract reliable bounds:

G.C., M.Buchkremer, A.Deandrea, L.Panizzi (F.Maltoni) in preparation

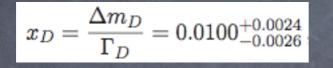
 identify un-equivalent channels (production+decay modes).

Experimentalists needed!

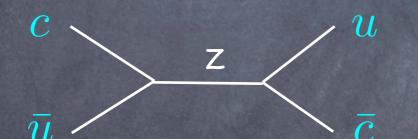
- calculate experimental efficiency per channel.
- input parameters: mass, BR, coupling (single prod.)

Bounds: DO-antiDO mixing

 $D_0 = c\bar{u} \qquad \bar{D}_0 = \bar{c}u$



In the SM, determined by long distance therefore, not calculable!



Conservative bound if exp value saturated by new physics contribution!

 $x_D = rac{f_D^2 m_D B_D}{2 m_Z^2 \Gamma_D} rac{2}{3} r(m_c,m_Z) (g_{ZR}^{uc})^2$

 $|V_R^{41}| |V_R^{42}| < 3.2 \times 10^{-4}$.

Bound on product: VR41 or VR42 can be large!

Bounds:

$D_0-ar{D}_0$ mixing	$ V_R^{41} V_R^{42} < 3.2 \times 10^{-4}$
APV in Cs	$ V_R^{41} < 7.8 \times 10^{-2}$
LEP1, charm couplings	$ V_R^{42} < 0.2$
Tevatron: $t \rightarrow Zc, Zu$	$ V_R^{43} \sqrt{ V_R^{41} ^2 + V_R^{42} ^2} < 0.28 V_{tb} $
D meson decays	none

Lesson to take away:

- Strong bound on product VR41*VR42!
- Mild bounds on individual couplings: mixing to either charm or up can be sizeable!
- Possible large Branching in light quarks and/or large single production cross section!

$$egin{split} \mathcal{L} &= \kappa_T \left\{ \sqrt{rac{\zeta_i \xi_W}{\Gamma_W^0}} rac{g}{\sqrt{2}} \left[ar{T}_{L/R} W^+_\mu \gamma^\mu d^i_{L/R}
ight] + \sqrt{rac{\zeta_i \xi_Z}{\Gamma_Z^0}} rac{g}{2c_W} \left[ar{T}_{L/R} Z_\mu \gamma^\mu u^i_{L/R}
ight] \ &- \sqrt{rac{\zeta_i \xi_H}{\Gamma_H^0}} rac{M}{v} \left[ar{T}_{R/L} h u^i_{L/R}
ight]
ight\} + h.c. \,. \end{split}$$

$$BR(T \to Zu/c) = \frac{(1-\zeta_3)\xi_Z}{1-\zeta_3(\sum_{V=Z,H}\xi_V\delta_V^t)}, \qquad BR(T \to Zt) = \frac{\zeta_3\xi_Z(1-\delta_Z^t)}{1-\zeta_3(\sum_{V=Z,H}\xi_V\delta_V^t)}$$
(21)

$$BR(T \to hu/c) = \frac{(1-\zeta_3)\xi_H}{1-\zeta_3(\sum_{V=Z,H}\xi_V\delta_V^t)}, \qquad BR(T \to ht) = \frac{\zeta_3\xi_H(1-\delta_H^t)}{1-\zeta_3(\sum_{V=Z,H}\xi_V\delta_V^t)}$$
(22)

$$BR(T \to W^+d/s) = \frac{(1-\zeta_3)(1-\xi_Z-\xi_H)}{1-\zeta_3(\sum_{V=Z,H}\xi_V\delta_V^t)}, \qquad BR(T \to W^+b) = \frac{\zeta_3(1-\xi_Z-\xi_H)}{1-\zeta_3(\sum_{V=Z,H}\xi_V\delta_V^t)}$$
(23)

Model independent parametrisation of the couplings:

+'.

$$egin{split} \mathcal{L} &= \kappa_T \left\{ \sqrt{rac{\zeta_i \xi_W}{\Gamma_W^0}} rac{g}{\sqrt{2}} \left[ar{T}_{L/R} W^+_\mu \gamma^\mu d^i_{L/R}
ight] + \sqrt{rac{\zeta_i \xi_Z}{\Gamma_Z^0}} rac{g}{2c_W} \left[ar{T}_{L/R} Z_\mu \gamma^\mu u^i_{L/R}
ight] \ &- \sqrt{rac{\zeta_i \xi_H}{\Gamma_H^0}} rac{M}{v} \left[ar{T}_{R/L} h u^i_{L/R}
ight]
ight\} + h.c. \,. \end{split}$$

Pair: 170 fb

$$\sigma(Tjet) = \kappa_T^2 \left(\xi_Z \sum_{i=1}^2 \zeta_i \ \bar{\sigma}_{Zi}^{Tjet} + \xi_W \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_{Wi}^{Tjet} + \sqrt{\xi_Z \xi_W} \sum_{ij} \sqrt{\zeta_i \zeta_j} \bar{\sigma}_{WZij}^{Tjet} \right) ,$$

1		$T\bar{t}$			\bar{T}_{t}				T			\bar{T}	
	i - 1	$\frac{1}{i-2}$	i - 3	i - 1	i - 2	i - 3		i = 1	i=2	i = 3	i = 1	i = 2	i = 3
$\bar{\sigma}^T$	-	-	$\frac{i-5}{6.6 \text{ fb}}$	-	<i>i</i> – 2	$\frac{i-5}{6.6 \text{ fb}}$	$ar{\sigma}_{Zi}^{Tjet}$	63,400 fb	$2,430~{\rm fb}$	-	$5,700~{\rm fb}$	2,300 fb	-
$\frac{\sigma_{Zi}}{\bar{\sigma}^T}$	1,470 fb				- 113 fb	33.5 fb	$\bar{\sigma}_{Wi}^{Tjet}$	45,600 fb	6,830 fb	2,680 fb	$5,840~\mathrm{fb}$	$3,160~\mathrm{fb}$	$1,165~\mathrm{fb}$
$ar{\sigma}_{Wi}^T \ ar{\sigma}_{ZWi}^T$	$\sim 0 \text{ fb}$					$\sim 0 \text{ fb}$	$\bar{\sigma}_{ZWii}^{Tjet}$	-1,900 fb	$\sim 0 ~\rm{fb}$	-	$\sim 0 ~{\rm fb}$	$\sim 0 \text{ fb}$	-
σ_{ZWi}	~ 0 ID	~ 0 ID	~ 0 10	~ 0 10	~ 0 ID	~ 0 ID	$ \begin{array}{c} \bar{\sigma}_{Zi}^{Tjet} \\ \bar{\sigma}_{Wi}^{Tjet} \\ \bar{\sigma}_{ZWii}^{Tjet} \\ \bar{\sigma}_{ZWlk}^{Tjet} \end{array} $	12: $\sim 0~{\rm fb}$	13: $\sim 0~{\rm fb}$	23: $\sim 0~{\rm fb}$	12: $\sim 0~{\rm fb}$	13: $\sim 0~{\rm fb}$	23: $\sim 0~{\rm fb}$

Model independent parametrisation of the couplings:

+'.

$$egin{split} \mathcal{L} &= \kappa_T \left\{ \sqrt{rac{\zeta_i \xi_W}{\Gamma_W^0}} rac{g}{\sqrt{2}} \left[ar{T}_{L/R} W^+_\mu \gamma^\mu d^i_{L/R}
ight] + \sqrt{rac{\zeta_i \xi_Z}{\Gamma_Z^0}} rac{g}{2c_W} \left[ar{T}_{L/R} Z_\mu \gamma^\mu u^i_{L/R}
ight] \ &- \sqrt{rac{\zeta_i \xi_H}{\Gamma_H^0}} rac{M}{v} \left[ar{T}_{R/L} h u^i_{L/R}
ight]
ight\} + h.c. \,. \end{split}$$

		$T\bar{t}$			$\bar{T}t$				T			\bar{T}	
	i = 1	<i>i</i> - 2	i = 3	i - 1	i - 2	i - 3		i = 1	i = 2	i = 3	i = 1	i = 2	i = 3
$\bar{\sigma}_{Zi}^T$		-	$\frac{i-5}{6.6 \text{ fb}}$	<i>i</i> — 1		$\frac{i-5}{6.6 \text{ fb}}$	$\bar{\sigma}_{Zi}^{Tjet}$	$63,400~{\rm fb}$	$2,430~{\rm fb}$	-	$5,700~{\rm fb}$	2,300 fb	-
$\bar{\sigma}_{Zi}^T$	1,470 fb			226 fb		33.5 fb	$\bar{\sigma}_{Wi}^{Tjet}$	45,600 fb	$6,830~{\rm fb}$	2,680 fb	$5,840~\mathrm{fb}$	$3,160~\mathrm{fb}$	1,165 fb
$ar{\sigma}_{Wi}^T \ ar{\sigma}_{ZWi}^T$	$\sim 0 \text{ fb}$		$\sim 0 \text{ fb}$	$\sim 0 \text{ fb}$	$\sim 0 \text{ fb}$	$\sim 0 \text{ fb}$	$\bar{\sigma}_{ZWii}^{Tjet}$	$-1,900 { m ~fb}$	$\sim 0 ~{\rm fb}$	-	$\sim 0 ~\rm{fb}$	$\sim 0~{\rm fb}$	-
σ_{ZWi}	10 10	010	10 0 10	010	10 10	10 0 10		12: $\sim 0~{\rm fb}$	13: $\sim 0~{\rm fb}$	23: $\sim 0~{\rm fb}$	12: $\sim 0~{\rm fb}$	13: $\sim 0~{\rm fb}$	23: ~ 0 fb

		T	\bar{T}				
	i = 1	i = 2	i = 3	i = 1	i = 2	i = 3	
$ar{\sigma}_i^{TZ}$	4,560 fb	77 fb	-	285 fb	124 fb	-	
$ar{\sigma}_i^{Th}$	$7,820~{\rm fb}$	189 fb	-	438 fb	189 fb	-	
$ar{\sigma}_i^{TW^\pm}$	$1,840~{\rm fb}$	$154~{\rm fb}$	$48~{\rm fb}$	303 fb	$154~{\rm fb}$	48 fb	

$$\begin{split} \sigma(TZ) &= \kappa_T^2 \left(\xi_Z \sum_{i=1}^2 \zeta_i \ \bar{\sigma}_i^{TZ} \right), \\ \sigma(Th) &= \kappa_T^2 \left(\xi_H \sum_{i=1}^2 \zeta_i \ \bar{\sigma}_i^{Th} \right), \\ \sigma(TW) &= \kappa_T^2 \left(\xi_W \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_i^{TW} \right). \end{split}$$

Catalogue:

Singlets	$\psi_{1a} = 1_{\frac{2}{3}} = U$	$\psi_{1b} = 1_{-\frac{1}{3}} = D$
SM doublet	$\psi_2 = {f 2}_{1\over 6} =$	$= \left(\begin{array}{c} U\\ D\end{array}\right)$
Doublets	$\psi_{3a} = 2_{\frac{7}{6}} = \left(\begin{array}{c} X\\ U \end{array}\right)$	$\psi_{3b} = 2_{-\frac{5}{6}} = \begin{pmatrix} D \\ X \end{pmatrix}$
Triplets	$\psi_{4a} = 3_{\frac{2}{3}} = \begin{pmatrix} X \\ U \\ D \end{pmatrix}$	$\psi_{4b} = 3_{-\frac{1}{3}} = \begin{pmatrix} U \\ D \\ X \end{pmatrix}$

Two fermion mixing: singlets/triplets vs doublets

$$\mathcal{L}_{ ext{mass}} = -rac{y_u v}{\sqrt{2}}\,ar{u}_L u_R - x\,ar{u}_L U_R - M\,ar{U}_L U_R + h.c.$$

$$\mathcal{L}_{ ext{mass}} = -rac{y_u v}{\sqrt{2}} \, ar{u}_L u_R - x \, ar{U}_L u_R - M \, ar{U}_L U_R + h.c.$$

3 parameters top mass fixed

$$egin{aligned} &rac{y_u^2 v^2}{2} = m_t^2 \left(1 + rac{x^2}{M^2 - m_t^2}
ight) \,, \ &m_{t'}^2 = M^2 \left(1 + rac{x^2}{M^2 - m_t^2}
ight) \,, \end{aligned}$$

2 free parameters mt' – x or M – x

$$\begin{split} \sin\theta^L_u &= \frac{Mx}{\sqrt{(M^2 - m_t^2)^2 + M^2 x^2}} \\ \sin\theta^R_u &= \frac{m_t}{M} \sin\theta^L_u \,. \end{split}$$

 $\sin\theta_u^L \gg \sin\theta_u^R$

Stronger bounds from left-handed couplings!

$$\begin{split} \sin\theta^R_u &= \frac{Mx}{\sqrt{(M^2-m_t^2)^2+M^2x^2}}\,,\\ \sin\theta^L_u &= \frac{m_t}{M}\sin\theta^R_u\,. \end{split}$$

 $\sin\theta_u^R \gg \sin\theta_u^L$

Flavour mixing

$$\mathcal{L}_{ ext{yuk}} = -y_u^{i,j}\,Q_L^i H^c u_R^j - y_d^{i,j}\,Q_L^i H d_R^j - \lambda^j\,\psi_L H u_R^j$$
 .

Diagonalising yu and yd, the mass matrix reads:

$$-(u_L, c_L, t_L, U_L) \cdot \begin{pmatrix} \tilde{m}_u & 0 \\ \tilde{m}_c & 0 \\ & \tilde{m}_t & 0 \\ x_1 & x_2 & x_3 & M \end{pmatrix} \cdot \begin{pmatrix} u_R \\ c_R \\ t_R \\ U_R \end{pmatrix} - M X_L X_R + h.c.$$

Ih mixing (VL) given by:

$$M_u \cdot M_u^{\dagger} = \begin{pmatrix} \tilde{m}_u^2 & 0 & 0 & x_1^* \tilde{m}_u \\ 0 & \tilde{m}_c^2 & 0 & x_2^* \tilde{m}_c \\ 0 & 0 & \tilde{m}_t^2 & x_3 \tilde{m}_t \\ x_1 \tilde{m}_u & x_2 \tilde{m}_c & x_3 \tilde{m}_t & M^2 + |x_1|^2 + |x_2|^2 + x_3^2 \end{pmatrix}$$

$$M_u^\dagger \cdot M_u = egin{pmatrix} ilde{m}_u^2 + |x_1|^2 & x_1^*x_2 & x_1^*x_3 & x_1^*M \ x_2^*x_1 & ilde{m}_c^2 + |x_2|^2 & x_2^*x_3 & x_2^*M \ x_3x_1 & x_3x_2 & ilde{m}_t^2 + x_3^2 & x_3M \ x_1M & x_2M & x_3M & M^2 \end{pmatrix}$$

Ih mixing angles suppressed by light quark masses!!!!!! Possibly large mixing! Suppressed only by small x1, x2

Flavour mixing

Couplings of U to the Z are different from up quark couplings:

$$\mathcal{L}_Z = rac{g}{c_W} \left(u_L, c_L, t_L, U_L
ight) \cdot \left[egin{pmatrix} 1 \ rac{1}{2} - rac{2}{3} s_W^2 \end{pmatrix} egin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix} - egin{pmatrix} 1 \ 1 \end{pmatrix}
ight] \gamma^\mu \cdot egin{pmatrix} u_L \ c_L \ t_L \ U_L \end{pmatrix} Z_\mu,$$

$$g_{ZR}^{IJ} = \frac{g}{c_W} \left(-\frac{2}{3} s_W^2 \right) \delta^{IJ} - \frac{1}{2} \frac{g}{c_W} V_R^{*,4I} V_R^{4J}$$

$$g^{IJ}_{ZL} = rac{g}{c_W} \left(rac{1}{2} - rac{2}{3} s^2_W
ight) \delta^{IJ} - rac{g}{c_W} V^{*,4I}_L V^{4J}_L$$

Large Flavour violating couplings only in the right handed Z sector. No large left handed couplings to Z and W!!!!

This leads to milder flavour constraints!!!