

Overview des les systématiques liées aux radiations

(parton-shower, ISR/FSR, color reconnection, underlying évent)

L. Mijović

jeudi, le 21 mars

top LHC-France 2013

Outline

I will:

- explain what parton-shower, ISR/FSR, color reconnection, underlying event are
- summarize systematics prescriptions used by CMS and ATLAS (+ pass an overview of generator settings used by the experiments)
- share some suggestions on ways to improve the systematics prescriptions in the future

Top Quark Production In p - p **Collisions**

- **•** take $t\bar{t}$ production + a single p p collisions
- Hard process: perturbative QCD calculation.
- beam remnants, multiple interactions: effective model.
- \blacksquare final state particles from interactions other than the process of interest \sim Underlying Event

Top Quark Production In p - p **Collisions**

- **•** take $t\bar{t}$ production + a single p p collisions
- Hard process: perturbative QCD calculation.
- beam remnants, multiple interactions: effective model.
- \blacksquare final state particles from interactions other than the process of interest \sim Underlying Event

Hard Process Matrix Element

Best choices depend on the use-case:¹

- use NLO calculation : limited number of final state legs
- use LO calculation : can producing ttbar final states with up to 5 extra final state partons

Which one to use ?

- NLO : (will likely do) better** for the top kinematics and direct decay products
- multi-leg : (will likely do) better** for high multiplicity final states
- \blacksquare \Rightarrow in general we need both.
- **ultimately, one should check which setup is in better agreement with the relevant data distributions.

Generators frequently used by CMS and ATLAS:

- NLO : MC@NLO, PowHeg-BOX(hvq)
- multi-leg : Alpgen, MadGraph

 $^{^{1}}$ Though models merging the best of two approaches exist and are being tested by the collaborations, the usage is not yet wide-spread.

- Hard process: evolution to lower scales in PDFs and hardonization:
- Initial State Radiation (ISR) [adds jets to the event]
- Final State Radiation (FSR) [takes energy from the jet]
- $\blacksquare ISR + FSR = Parton Shower$
- Underlying Event (UE) adds soft particles to the final state
- Colour Reconnection (CR) : colour exchange between the decay products
- e.g. $q\bar{q}$ from W hardonizes collectively with the rest of the event
- affects final state hadrons direction

- Hard process: evolution to lower scales in PDFs and hardonization:
- Initial State Radiation (ISR) [adds jets to the event]
- Final State Radiation (FSR) [takes energy from the jet]
- ISR + FSR = Parton Shower
- Underlying Event (UE) adds soft particles to the final state
- Colour Reconnection (CR) : colour exchange between the decay products
- e.g. $q\bar{q}$ from W hardonizes collectively with the rest of the event
- affects final state hadrons direction

- Hard process: evolution to lower scales in PDFs and hardonization:
- Initial State Radiation (ISR) [adds jets to the event]
- Final State Radiation (FSR) [takes energy from the jet]
- $\blacksquare ISR + FSR = Parton Shower$
- Underlying Event (UE) adds soft particles to the final state
- Colour Reconnection (CR) : colour exchange between the decay products
- e.g. $q\bar{q}$ from W hardonizes collectively with the rest of the event
- affects final state hadrons direction

- Hard process: evolution to lower scales in PDFs and hardonization:
- Initial State Radiation (ISR) [adds jets to the event]
- Final State Radiation (FSR) [takes energy from the jet]
- $\blacksquare ISR + FSR = Parton Shower$
- Underlying Event (UE) adds soft particles to the final state
- Colour Reconnection (CR) : colour exchange between the decay products
- e.g. $q\bar{q}$ from W hardonizes collectively with the rest of the event
- affects final state hadrons direction

- Hard process: evolution to lower scales in PDFs and hardonization:
- Initial State Radiation (ISR) [adds jets to the event]
- Final State Radiation (FSR) [takes energy from the jet]
- $\blacksquare ISR + FSR = Parton Shower$
- Underlying Event (UE) adds soft particles to the final state
- Colour Reconnection (CR) : colour exchange between the decay products
- e.g. $q\bar{q}$ from W hardonizes collectively with the rest of the event
- affects final state hadrons direction

Efective Models and Systematics

Effective models are used for all of :

- Initial State Radiation (ISR) [adds jets to the event]
- Final State Radiation (FSR) [takes energy from the jet]
- Underlying Event (UE) adds soft particles to the final state
- Colour Reconnection (CR) affects final state hadrons direction

Generators most widely used so far by CMS and ATLAS :

- fortran Pythia 6.4X
- fortran Herwig 6.5X

There are many newer models on the market ...

Systematics

Modelling assumptions can affect the simulated observables distributions;

- different generators can be used for the hard process ME
- Different assumptions are made in different effective models (ISR/FSR,UE,CR) ⇒ systematics can be assessed by comparing different models
- The effective model contains free parameters to be tuned to the data ⇒ systematics can be assessed by comparing samples with different model parameter settings

In the following slides I will try to set up the basis for the discussion by:

- summarizing the way the systematic uncertainties related are evaluated in ATLAS and CMS
- + (briefly) sharing some thoughts on ways to improve them in the future;
 and hoping to hear your opinion and ideas on this point!

For recent comprehensive summaries, see modeling related talks at the TOP LHC WG meetings:

```
https://indico.cern.ch/conferenceDisplay.py?confId=189617
http://indico.cern.ch/conferenceDisplay.py?confId=217721
```

Pythia 6 Tunes used by CMS and ATLAS

Both experiments using new PS/MPI Pythia 6 model (pT-ordered PS, interleaved ISR-MPI evolution).

References:

- CMS: Z2(*), arXiv:1010.3558v1 [hep-ph] (LHS Fig.)
- ATLAS: AUET* series, ATL-PHYS-PUB-2011-009 (RHS Fig.)
- both also use author Perugia2011 tune series (arXiv:1005.3457 [hep-ph])

Data used for tuning for 7 TeV data production round:

- LHC UE for both ATLAS and CMS
- PS parameters acc. to QCD jet shapes, QCD dijet decorrelations ...
- data constraints on systematics relevant for top taken into account with shorter turn-around that change of production tune

CMS generator setups

courtesy of M. Gosselink (CMS)

process	\mathbf{ME}	\mathbf{PS}	\mathbf{method}	PDF	Tune
$t\bar{t}+0,1,2,3$	MadGraph v5.1.x	Pythia v6.42x	ME+PS	CTEQ6L1	Z2(*)
$t\overline{t}$	POWHEG-box	Pythia v6.42x	NLO	CTEQ6M	Z2(*)
$t\bar{t}$	MC@NLO v 3.41	Herwig v6.510	NLO	CTEQ6M	_
t/\bar{t} (s,t,tW)	POWHEG-box	Pythia v6.42x	NLO	CTEQ6M	Z2(*)
$t/\bar{t} (s,t)$	CompHEP v4.5.1	Pyhtia v6.42x	ME	CTEQ6M	Z2(*)

- ▶ Pythia with p_T^2 -ordered PS (pre-2011: q²-ordered with D6T UE tune)
- ▶ Herwig \rightarrow Jimmy for UE
- ▶ Main background V+jets with MadGraph + Pythia

CMS TH systematics

generator vs generator comparisons:

compare the setups in p6

single top Wt-chan.:

DR vs DS schemes (on ATLAS side studied but not quoted)

generator parameter variations:

Non-perturbative systematics:

- colour reconnections: using Pythia 6, P2011 and P2011NoCR
- underlying event: intention to use Pythia 6, author P2011 variations

Matching-related uncertainties for MadGraph + Pythia 6:

- variation of MG parameter QCUT² by 0.5 and 2 wrt. to default
- applied to $t\bar{t}$ and V+jets samples

 $^{^2 \,} Jet$ measure cutoff used by Pythia for matching using $k_{\mathcal{T}}$ scheme

CMS TH systematics cont'd

Q² parameter variations, courtesy of M. Gosselink (CMS)

Variation of Q (Q^2) with a factor 0.5 and 2.0 (0.25 and 4.0)

More explicitly:

- matrix element:
 - $Q^2 = m_t^2 + \sum p_T^2$ (MadGraph) and $Q^2 = m_t^2$ (POWHEG)
 - scalefact/facscfact (scale factor for event-by-event scales)
 - alpsfact/renscfact (scale factor for QCD emission vx)
- ▶ parton shower:
 - ► factor for k_T^2 evolution scale in α_s (space-like, ISR) PARP(64)=0.25/4.0 (D=1.0)
 - Λ scale in α_s (time-like, FSR)
 PARP(72)=0.5/0.125 (D=0.25), but MSTP(3)=2 (D)
 - ▶ NOTE: implicitly starting scale of the PS changes accordingly

ATLAS generator setups

tī:

- MC@NLO 4.0X + fHerwig (6.520) + Jimmy (4.31): main sample generator,
- \blacksquare POWHEG-hvq-patch4, POWHEG BOX (1.0.X) + Pythia 6 6.42X, X $\geq\!\!5$ or fHerwig + Jimmy
- Alpgen 2.1X (Np5), $X \ge 3 + fHerwig + Jimmy or + Pythia 6$
- AcerMC 3.8 + Pythia 6 for I/FSR systematics (+ attempts with Alpgen 2.1X + Pythia 6)

single top:

- MC@NLO + fHerwig + Jimmy (not used for t-chan.)
- AcerMC + Pythia 6, incl. I/FSR systematics
- I/FSR systematics prescriptions and variation ranges are the same as for the ttbar

main backgrounds (W,Z+jets, diboson prod.):

- Alpgen 2.1X (Np5), X≥3 + fHerwig
- fHerwig + Jimmy tunes (Pythia 6 tunes described earlier):
 - ATL-PHYS-PUB-2011-008, include LHC UE, but data-MC agreement not comparably good to what can be obtained when using Pythia 6

ATLAS TH systematics

generator vs generator comparisons: 2 sources quoted for $t\bar{t}$ production

- Generator Systematics: POWHEG-X+fHerwig vs MC@NLO+fHerwig (we also have multi-leg samples available in the *t*t̄ case, which analyses may use),
- Parton Shower / Hadronization Systematics: POWHEG-X+fHerwig vs POWHEG-X+Pythia 6,

parameter variation samples: I/FSR:

- LO generator based, no matching
- DD systematics bands using jet veto analysis
- Fig: Eur.Phys.J. C72 (2012) 2043
- multi-leg Alpgen + Pythia similar to CMS in use / to come

ATLAS: nonperturbative systematics

Based on Pythia 6 + parameter variations; Underlying event:

- Parameter variations performed around the central ATLAS tune using Professor eigentunes.
- Variations ranges: ± ~ 10% activity with respect to the central tune (charged particle multiplicity, average pt as a function of leading jet) in the transverse region plateau of the track based ATLAS UE study (Phys. Rev. D 83 (2011) 112001, arXiv:1012.0791).
- CR parameters are kept fixed.

Color reconnections:

Perugia 2011 and Perugia 2011 NOCR (both using the new PS/MI Pythia model),

Relatively small wrt. to other sources, if/once large one should aim to get better estimates.

ATLAS vs CMS TH Systematics Categories

Take **LHC Top mass combination** as an example; systematics grouped well such as to be comparable between the ATLAS and CMS, but:

- differences in categories, most notably for Radiation
- some systematics in table below (most notably NP) were missing and are based on assumptions rather than actually evaluated
- progress made on both of these in the mean time

Uncertainty Categories			Size [GeV]						
			ATLAS			CMS			
Tevatron	ATLAS	CMS	2010	2011	2011	2010	2010	2011	2011
			l+jets	l+jets	all jets	di-l	l+jets	di-l	μ +jets
MC	MC Generator	MC Generator	0.7	0.3	0.5	0.4		0.1	
	Hadronisation		0.7	0.2	(*)				
	Sum	Sum	1.0	0.4	0.5	0.4		0.1	
Rad	ISR/FSR	ISR/FSR	2.5	1.0	1.7	0.2	0.2		
		Q-Scale				0.6	1.1	0.4	0.8
		Jet-Parton Scale				0.7	0.4	0.7	0.3
	Sum	Sum	2.5	1.0	1.7	0.9	1.2	0.8	0.8
CR	Colour Recon.		0.6	0.6	0.6	0.5	0.5	0.5	0.5
	Underlying	Underlying							
UE	Event	Event	0.6	0.6	0.6	1.4	0.2	0.6	0.6

Ideas For Improvement

more constraints from the data

more measurements in tt (or eventually even single top) CMS and ATLAS ideas : http://indico.cern.ch/conferenceDisplay.py?confId=217721

more measurements from other high-pt processes

use more/newer generators

- esp. for parton shower, UE, CR fHerwig and Pythia 6 are superseded by newer models
- Herwig++, Pythia8, Sherpa

systematics categories synchronization between ATLAS and CMS

- a lot of progress made in the TOPLHC WG headed by Roberto Chierici and Markus Cristinziani
- room for improvement, esp. in synch with progress in the first two items