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Advanced Techniques w/Particle Flow
* The general feel of the particle flow

* Minimize the information loss at every step

- Best subcomponents possible
- Allows for standard objects to be pushed to new regimes

« Simple example : Jets at low p_
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What can we do with particle flow?
e Consider tau reconstruction

e Tau reconstruction starts with a jet

- A simple cone of energy
- Clustered like any other
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Basic Jet Information
 Tau reconstruction : 1%' step

* Look at the composition of the jet
- This is where non PF algorithms basically stop

Electro-magnetic



Simple view of Particle Flow
 Tau reconstruction : 2" Step

 Pull out the charged components of the jet
» Re-classify the clusters

Charged
Neutral-like
Electro-magnetic




ldentifying Tau decay: 1 prong
 Tau reconstruction : 3" Step
. With classified particles look for high p_ pion

- This is how we find 1 prong decays

TTT

Charged



ldentifying Tau decay: 3 prong
 Tau reconstruction : 3™ Step
« With classified particles look for 3 high p_ pions

- Require mass of 3 pions near the a,

T—>a1—>31'r

m(31) = 1.2 GeV _
4’

Charged




ldentifying Tau decay:1prong +1°
 Tau reconstruction : 3" Step
« Look for 1 high p_pion + em object (11°)

- Require mass of 2 objects to near p

T p—TITT
m(1r1°)=0.8 GeV

/\/\//\/\/’\/\//\/\//V\/

Charged
Neutral-like
Electro-magnetic
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Summary of Tau objects
o Start with a jet — look for T decay inside
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Second critical key to Tau Id
 Particle flow allows for isolation of the tau

e Concept : identify the tau

B p
, = ’\/\/’\/\/m

Charged
Neutral-like
Electro-magnetic

10



04/23/13 Philip Harris Advanced Techniques in PF

Second critical key to Tau Id
 Particle flow allows for isolation of the tau

e Concept : identify the tau
« Remove it and sum remaining stuff

Charged

11
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Tau Isolation in Plots
» Shape of isolation inside used to remove bkg

 Distribution/type of object identifies pileup

* |solation separated out into photonic/charged/neutral
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Improving Lepton Resolutions
* Understanding known effect:

* Recovering these photons enables higher resolution
* Improves sensitivity to resonant searches
» Used for higgs—ZZ—4l
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Understanding Jets
* The insides of jets have a lot of information
* \We can use these insides to isolate pileup
* Mapping vertexing w/Jets
 Removal of pileup O

14



Charged Hadron Subtraction

* The insides of jets have a lot of information
* \We can use these insides to isolate pileup

* Mapping vertexing w/Jets

« Removal & reclustering of jets

Charged candidate not from the primary verte»

15



Removing Pileup
« Charged hadron subtraction: 50% less pileup

* Does not remove the neutral pileup
- Observed by measuring looking randomly in detector

Pileup Contribution
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Tagging Neutrals
« Can use the vertex info to link clustered deposit

* Neutrals from pileup are often clustered w/charged

 |solate sub-jets from pileup
- Remove substantial fraction of energy

/

Charged candidate not from the primary verte»
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Removing the Neutrals
* Pileup can be clustered into jets

» Large incidence of two small pileup jets merging
« Physics for low p_ jets swamped by

- ldentifying pileup jets critical \

|dentify jet as pileup jet
based on

Charged candidate not from the primary verte»
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e |dentification allows for

Ratio Fraction of 0-jet events

Philip Harris Advanced Techniques in PF

Pileup Jet Id Performance

* Reduction of background (particularly forward jets)

* Precise control of jet vetos

- Minimized systematic uncertainties from pileup

5.1/fb 8 TeV, CMS Preliminary

" ++_.__.__._—|—+"i‘“" E
- - Bt
E . i)
+
=
- -3 vix all
C e -3 vix [0.8] .
- #vix [9,12] =
B # vix [13,16] 2
e 7 vix [17,20] -
- % vix [20 +] .
32 3
20 40

60 80 100
Jet P, threshold [GeV]

14 TeV High Pileup VBF
25 ns spacing (+75 pileup)

Look for production
7 1° Jet

19



Pileup Jet Id Performance
e |dentification allows for

* Reduction of background (particularly forward jets)

* Precise control of jet vetos
- Minimized systematic uncertainties from pileup
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Expanding on this Concept
e Sub-clustering of jets allows for \W/Z-tagged jets

« Additionally Higgs and Top tagged jets
* Angular resolution of sub-jet is key

» Leads to good mass tag

W/Z/H . |
"\/\/\/\,<a Boosted Regime

Quark

/ Quark



Expanding on this Concept
e Sub-clustering of jets allows for \W/Z-tagged jets

« Additionally Higgs and Top tagged jets
* Angular resolution of sub-jet is key

» Leads to good mass tag

/ / Quark
W/z/
/\<q Look familiar?

Quark
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W/Z/H tagged Jets
« W/Z/H-tagged jets will important in future LHC

* Transition from higgs search to high mass searches
» Substructure tagging probes high p_electroweak

e Techniques further reduce the effects of pileup
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MET
« With particle flow : event can be dragged in easily
» Allows embedding of data MET into MC event

. — @

—

—
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Modelling MET in data

« With particle flow : event can be dragged in easily
» Allows embedding of data MET into MC event

O Replace
leptons
& w/simulated &

—

Particle level embedding avoids mis-alignment
confusion between data/MC
Confusion persists at hit level
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ME T model performance
 Embedding of events preserves kinematics in data

» Useful to model large yield backgrounds
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Combining Jets: MET

 Concept:
» Compute recoil(U) of all of the different components

Feed them into a BDT regression :’
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MVA MET

e Concept:
* Recoil here=®defined as MET — leptons

5 Separate recoils calculated
Each targets different component

p
Feed them into a BDT regression

: Correct Recaoll
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number of events / 4 GeV

Data/MC

Philip Harris Higgs Quo Vadis

MVA MET Performance
MVA MET reduces pileup contribution by 4

Maintains high response of other METs
« Small tails of MET are preserved

Many ways to improve the peformance
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Going to the Extremes
 LHC already has a lot of data with heavy ion running

* Particle Flow is successfully used in this environment




04/23/13 Philip Harris Advanced Techniques in PF

Advantage of Particle Flow
* Matching with calorimeters removes “fake” tracks

» Fake tracks result from high number of silicon hits
- Confusion track reconstruction leads to “fake” tracks

Fake Tracks - =

Inside jet no _ —
calo deposit Fakes induced bias jet p_spectra

31
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Precision in Heavy lons
» Particle flow removes fragmentation bias in jets

- Lack of PF(links) tracking gives dearth of low p_ deposits

« PF minimizes jet shape biases (particularly at high pT)

- Enabling the low p_charged hadrons to be clustered

[
CMS Preliminary L, = 140 ub”
- (o 12010, 0-30%, Leadingjet

—mEm 2011, 10-30%,Inclu

- Jet p. > 100GeV/c

e 2011, 0-10%, Inclusive jet

S

1 2 3 4 5

§=In(1/2)=In(p_/p )

/

Observed deviation in
low p_ tracks

Results from quark
gluon plasma
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Conclusions
« Particle Flow enables advanced techniques

* Impetus for a plethora of techniques
» Allows for re-thinking of basic problems

» Algorithm performant at the frontier of LHC running

» Used in identification of fundamental particles
* Techniques involving extreme precision

» Effective at mitigating effects of high pileup

e Tested in the extreme heavy ion environment

 Essential tool for the future of LHC

33
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CHIEF

At the LHC Intensity will be crucial

oy

Particle Flow based algorithms have proven
effective at the high intensity & Energy Fontier

34
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Targeted Sub-Clustering
e Sub-clustering partially isolates the pileup

* Sub-clusters from pileup are removed
- Newest sub-clustering simple QCD splitting-likelihood
- Algorithms known as jet grooming

» Effectiveness on pileup is being understood

CMS L 5 fb at \f_ ? TeV AK7 W+|et
E—

Data, Trimmed AK7

¢  Data, Pruned AK7

-:-r—-———u 1-—-—_+---—-L~E:- C-pi-E
9%\@%@0%@0@0 ¢¢~+-¢-¢§

| [ | | 1 | i | |

< 150 } A
o) O Data Ungroomed K7

S Pyth|a6 Z2, Ungroomed AK7
S O] Data, Filtered AK7

E _ [=—_] Pythia6 22, Filtered AK7

Pythia6 Z2, Trimmed AK7

[ [ ] Pythia6 22, Pruned AK7

50 e
4 "a%a%s 4!

(b) |

| 1 |
0 10 20

At each stage of grooming

/ reduced slope vs pileup



04/23/13 Philip Harris Advanced Techniques in PF

Compact Muon Solenoid
Compact Muon Solenoid

/ﬁ %
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Original CMS logo Logo on the Slide 1
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