

Liquid Xenon Calorimeter for MEG

Ryu Sawada The University of Tokyo 22/April/2013

CHEF 2013

$\mu \rightarrow e\gamma$ physics motivation

New physics

Many new theories beyond the standard model predicts large branching ratios

Br ~ 10⁻¹⁴-10⁻¹¹

T.Mori hep-ex/0605116

Branching ratio of $\mu \rightarrow e\gamma$ (<10⁻⁴⁰) is very small

Current limit : Br < 5.7×10⁻¹³ (90% C.L.) MEG, 2013, arXiv:1303.0754 submitted to Phys. Rev. Lett.

Discovery of $\mu \rightarrow e\gamma$ is a clear evidence of new physics

CHEF 2013

Ryu Sawada

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

Inorganic scintillators and LXe

	Nal(TI)	CsI(TI)	BaF2	BGO	LSO(Ce)	PWO	LaBr3(Ce)	GSO	LFS-3	LXe
Density (g/cm3)	3.67	4.51	4.89	7.13	7.40	8.3	5.29	6.71	7.35	2.98
Radiation Length (cm)	2.59	1.86	2.03	1.12	1.14	0.89	1.88	1.38	1.15	2.8
Hygrosco picity	Yes	Slight	No	No	No	No	Yes	No	No	-
Luminesc ence (nm) at peak	410	550	300 220	480	402	425 420	356	430	425	175
Decay Time	245	1220	650 0.9	300	40	30 10	20	30-60	25-33	45
Light Yield (%)	100	165	36 4.1	21	85	0.3 0.1	221	20	80-85	80

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

2.7 t (900I) LXe calorimeter

- Merits
 - High light output(80% of Nal)
 - Fast timing response(45ns)
 - Heavy(3g/cm3)
- Challenges
 - Low temperature(160K)
 - 200W pulse tube cryocooler
 - Short scintillation wavelength (175nm)

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

Construction In 2007

CHEF 2013

Ryu Sawada

Calibration and monitoring

Process		Energy (MeV)	Frequency
Charge exchange	$\pi^- p \to \pi^0 n$	54.9, 82.9	yearly
Charge exchange	$\pi^{0} \to \gamma \gamma$ $\pi^{-} p \to n \gamma$	129.0	yearly
Radiative μ^+ decay	$\mu^+ \rightarrow e^+ \gamma \nu \nu$	52.83 endpoint	weekly
Proton accelerator	$^{7}\mathrm{Li}(p,\gamma_{17.6(14.8)})^{8}\mathrm{Be}$	14.8, 17.6	weekly
	${}^{11}\mathrm{B}(p,\gamma_{4.4}\gamma_{11.6}){}^{12}\mathrm{C}$	4.4, 11.6	weekly
Nuclear reaction	58 Ni $(n, \gamma_{9.0})^{59}$ Ni	9.0	daily
AmBe source	${}^{9}\text{Be}(\alpha_{241}\text{Am}, n){}^{12}\text{C}_{*}$ ${}^{12}\text{C}_{*} \rightarrow {}^{12}\text{C}\gamma_{4.4}$	4.4	daily

CHEF 2013

Ryu Sawada

Calibration and monitoring

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

Calibration and monitoring

CHEF 2013

Ryu Sawada

Energy Scale Uniformity

Non-uniformity due to

- Geometry
- Reconstruction algorithm
- Correction using
 - 17.6 MeV CW gamma for position
 - 55 MeV CEX gamma for depth (energy dependent)
- Checked using background gamma spectrum during physics run

After correction : ~0.2 % uniform

17.6 MeV CW data uniformity before correction

CHEF 2013

Ryu Sawada

CHEF 2013

23/Oct

2011

2011

Liquid Xenon Calorimeter for MEG

23/Oct

23/Sep

Energy resolution

Resolution map

Measured using 55 MeV CEX gamma rays

Lower tail due to

- Energy deposit in material before entering LXe (Magnet, cryostat, PMT holder etc.)
- Energy escape from LXe

Average resolutions

1.7% (depth>2cm), 2.4% (depth<2cm)

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

Position resolution

H By

Measured using lead collimators with CEX data

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

Timing resolution

1200

1000

800

600

400

200

-1.5

Number of events /(0.03 nsec)

Pb converter

Time resolution : 67 ps

= 119ps - beam spread(58ps) - resolution of reference counter(81ps)

-1

-0.5

0

Breakdown

Ťγ2

 T_V

Intrinsic	36 ps
ToF (depth)	20 ps
Electronics	24 ps
Position resolution and shower fluctuation	46 ps

0.5

1

 $t_{\gamma}^{\text{LXe}} - t_{\gamma}^{\text{ref}}$ (nsec)

1.5

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

20

40

50

60

70

 $\sigma = \sqrt{338^2 / E_{\gamma} (\text{MeV}) + 109^2} \text{ (psec)}$

 $\sigma = \sqrt{338^2 / E_{\gamma} (\text{MeV})} + 45^2 (\text{psec})$

80

90

100

5

 E_{γ} (MeV)

Ryu Sawada

What is limiting the resolutions?

- Photo-electron statistics is not the main component. (N_{phe} ~ 100,000)
- Non uniformity of photon collection efficiency
- Fluctuation of shower shape
- Other possibilities

CHEF 2013

- Angular dependence of PMT response ?
- Insufficient knowledge of LXe properties ?

Typical energy deposit in LXe (color represents time of deposits)

Upgrade

CHEF 2013

Ryu Sawada

New detector concept

8

Replacing PMTs in entrance face with SiPMs

Present detector 2 inch PMT

Higher granularity More uniform collection efficiency Less material before LXe

Upgraded detector (CG) 12×12 mm² SiPM (Hamamatsu MPPC)

Better position and energy resolutions Higher efficiency (9% improvement, MC)

(Gamma rays enter from the left side of the picture)

CHEF 2013

Ryu Sawada

Imaging Calorimeter Event display of the same MC event Two gamma rays pileup Present **216 PMT** in entrance face ×16 more Lin<mark>ear sc</mark>ale Log scale "pixels" Upgraded ~4000 SiPMs in entrance face Log scale

Color code : N_{phe} / area

CHEF 2013

Ryu Sawada

Ryu Sawada

Development of new SiPM for LXe

No commercially SiPMs sensitive to LXe light is available. We are developing a new type of MPPC sensitive to LXe VUV light

<u>Summary</u>

- The world largest LXe scintillation detector for MEG was developed
- Stable operation for >5 years
- Sophisticated calibration by many methods
- Performance measured

Energy Resolution	1.7%
Position Resolution	5 mm
Relative time Resolution	67 ps
Efficiency	63%

- Upgrade using a new type of SiPM sensitive to LXe light
 - R&D in progress

Ryu Sawada

Back up

CHEF 2013

Ryu Sawada

Calibration

CHEF 2013

Ryu Sawada

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG

Upgraded Detector

CHEF 2013

Ryu Sawada

Liquid Xenon Calorimeter for MEG