Evolution of the CMS ECAL response, R&D studies on new scintillators and possible design options for electromagnetic calorimetry at the

MS Experiment at the LHC, CERN warecorded: 2012-May-13 20:08:14.621490 GMT an/Event: 194108 / 564224000

> CHEF 2013 24. April, 2013

Adi Bornheim Caltech

CMS ECAL

Barrel crystals

Endcap "Dees" // with "supercrystals"

(5x5 crystals)

Pb/Si preshower

Barrel

Super Module

(1700 crystals)

Homogeneous, compact, hermetic, fine grain PbWO₄ crystal calorimeter

- → Emphasis on energy resolution
- →No longitudinal segmentation (except preshower)
- Barrel (EB) :
 - |η| < 1.48
 - 36 Super Modules: 61200 crystals
 - (2.2×2.2×23 cm³) ~26X₀

> Endcaps (EE) :

- 1.48 < |η| < 3.0
- 4 Dees:14648 crystals
- $(3.0 \times 3.0 \times 22 \text{ cm}^3) \sim 25 X_0$

> Preshower (ES) :

- 1.65 < |η| < 2.6
- 3X₀ of Pb/Si strips
- 1.90 × 61 mm² x-y view
- CMS Characteristics:
 - Tracker coverage: |η| < 2.5;
 - CMS Magnetic field: B = 3.8 T
 - ECAL fully contained inside the coil

HL-LHC Upgrades – CMS Phase II

- Anticpated time frame >2022 to beyond 2032.
- Integrated luminosity : 3000 fb⁻¹ (today :30 fb⁻¹)
- ► L_{peak} = 10³⁵ cm⁻²s⁻¹, leveled to 5×10³⁴ cm⁻²s⁻¹ (today : 7.7×10³³ cm⁻²s⁻¹)
- Expect >100 pile-up interactions per bunch crossing

Physics goals for HL-LHC

Precise measurement of Higgs boson properties

- Measurement of exclusive channels and rare decays
- VV-scattering and Higgs self-coupling
- Continued search for BSM physics

CMS Experiment at LHC, CERN Data recorded: Mon Sep 26 20:18:07 2011 CEST Run/Event: 177201 / 625786854 Lumi section: 450

Radiation levels in CMS

> Radiation levels uniform in EB, strong dependence on η in EE

- Radiation dose at the EM shower max for L = 10³⁴ cm⁻²s⁻¹:
 - 0.3 Gy/h in EB
 - 6.5 Gy/h at η=2.6

- Charged fluence per cm² for L_{Int} = 500 fb⁻¹
 - 4×10¹¹ in EB
 - 3×10¹³ in EE at η=2.6

Additional Challenges for HL-LHC

- To achieve luminosity target, LHC will need to operate with more than 100 pile-up interactions.
- In-time and out-of-time pile-up activity will have a significant impact on physics object performance.
- Present ECAL may not have sufficient granularity to maintain performance.
- Example : Cut-based photon identification efficiency vs pile-up.

Evolution of the CMS ECAL response

- Short term ECAL response variations measured with light monitoring system.
- Additional long term corrections with physics calibration.
- Response change currently dominated by transient, dose rate dependent ionisation effects (`EM damage`).
- See presentations by M. Dejardin and M. Obertino (Monday).

- Response change correlates with crystal raditation hardness (μ_{ind}) measured as quality control with standardized γ irradiation.
- Non-zero intercept suggests additional effects uncorrelated with crystal properties (eg. conditioning of photo detectors).

Proton Induced Crystal Damage

- Hadron fluence causes damage to the crystals by a different mechanism.
- Does not recover at room temperatue, cumulative with luminosity.
- Results in transparency loss as for EM induced damage, however damage depth profile different.
- Performance of crystals from different producers (BTCP, Russia and SIC, China) identical.

Validation of MC simulations (I) Crystals with proton damage

- Compare light output from traversing or absorbed particles with light transmission.
- ➢ Ray tracing MC (LITRANI) accurately describes relation.

Proton Damaged Induced Resolution Degradation

- Proton irradiated crystals (24 GeV proton beam, fluence 6×10¹³ p/cm², μ_{Ind}=11 m⁻¹) exposed to electron test beam.
- Measured energy resolution in agreement with simulation.

Validation of MC simulations (II) Response Uniformity under Irradiation

- > Correlation between μ_{int} and variation of light output between 4 X₀ and 13 X₀ (FNUF).
- Important benchmark, affecting the constant term of the energy resolution.

Resolution Degradation at Large Transparency Loss

- With large transparency losses, energy resolution will degrade :
 - Photo statistics reduced.
 - Relative noise increased
 - Crystal non-uniformity.
- Impact on physics analysis is being investigated.

R&D studies on new scintillators

R&D on new crystal materials ongoing. See eg.

- Investigations on LYSO, YSO, LuAG, CeF₃.
- Key objective : Increase radiation hardness, in particular against hadron damage

Possible design options for electromagnetic Calorimetry at HL-LHC

- Some scintillator materials under consideration can be machined easily into thin plates with holes.
 - Shashlik design with fiber readout can be considered
 - Depth segmentation and dual readout is an option.
- Sampling option has several desirable features :
 - Reduce light path length from >20 cm (length of current EE crystals) to <1cm (transverse size of active material).
 - Reduced amount of active material needed to achieve full shower containment.
 - Very dense absorber allows smaller cell size ⇒ optimize segmentation.
- A prototype using LYSO and lead or tungsten is being built to go into test beams in late 2013 / early 2014.

Possible design options for electromagnetic Calorimetry at HL-LHC

- Dual Read Calorimeter of singlecrystalline LuAG Fibers.
- Prototype was tested in CERN beams in November 2012.

- CeF3 or YSO based sampling calorimeter.
- Less sensitive to hadron damage then LYSO.
- Detailed detector confiuration being studied.

Pico-second Timing

- Current ECAL has excellent time resolution of <100 ps in test beam.</p>
- > Better than 200 ps in-situ, even though not optimised for precision timing.
- Studies on precision timing for the upgrade ongoing. One target application is pile-up mitigation, desired resolution is order 10 ps.

- CMS ECAL performance under LHC radiation conditions is being studied in detail.
- Very good understanding of response variation achieved.
- Dedicated studies on performance and requirement for HL-LHC are ongoing.
- Options for precision calorimetry under consideration for luminosities of 10³⁵ cm⁻²s⁻¹ and cumulative data sets of 3ab⁻¹.
- First prototypes are being built and exposed to test beams.

