

XEMIS: The new Compton camera with liquid xenon

Jérôme Donnard

The Compton telescope

Good angular resolution (~ 1): good energy resolution (~ a few %) good spatial resolution (< 0.5 mm in each D)

• Enough sensitive for γ -rays imaging ? if enough interaction lengths

The 3 y imaging concept

ARRONAX

R&D focusing on MeV γ -rays Imaging with liquid xenon and new radiopharmaceuticals produced by the ARRONAX cyclotron

Direct 3D reconstruction in counting mode

The XEMIS2 project

Installation in Nantes hospital in 2016

Hollow cylindrical Camera (180 kg LXe)

- 7 < r < 19cm
- 50 PMTs Hamamatsu
- 20 000 ultra low noise FEE channels IDeF-X HD LXE with 3.175 mm² pixels
- Integrated recovering system

~1cm resolution along the LOR

- Equivalent to 30ps in TOF-PET
- GATE¹ Simulation

The camera characteristics

- Energy resolution: 5% @ 511 keV
- Spatial resolution : 0.5 mm (X, Y et Z)
- Efficiency 3γ: 3%
- 20 to 100 fold decrease of injected activity

XEMIS 1: the proof of concept

¹OpenGATE collaboration: <u>http://www.opengatecollaboration.org/</u>

XEMIS1 goals

Very challenging development around a new concept!

XEMIS1 facility

The purification loop

Impurities contamination below the ppb within few days

Purification results

Energy and position measurements

Dubatech

A TPC in LXE as Compton Telescope

2.54cm

Segmented anode 6.35 x 6.35 mm² pitch

Substach Apparatus with 511 keV calibration γ line

Suble Depth of interaction resolution (@ 511 keV)

Purity of the xenon monitoring

Electronegative impurities absorb electrons drifting in LXe

SubstactIonisation yield measurement (@511 keV)

Energy resolution (@511keV)

Higher granularity with 64 pixels

Higher granularity with 64 pixels

Higher granularity to improve XY resolution Analysis in progress

What do we learn until now ?

"Technical" prove of concept with XEMIS1:

- Intrinsic ionization energy resolution of liquid xenon is achievable with the low noise front-end electronics we developed
- Required spatial resolution for Compton reconstruction is achievable with Micromegas and liquid xenon
- Purification of an important liquid xenon volume is achievable

What is missing to end it ?

• Higher granularity on the anode in order to record and identify precisely the whole Compton sequence (analysis in progress)

Design of XEMIS2 Compton Camera