

Pandora Particle Flow Algorithm

J.S. Marshall, M.A. Thomson, University of Cambridge CHEF2013, Paris, 24th April 2013

- I. Calorimetry Goals at a Linear Collider
- 2. Fine Granularity Particle Flow Calorimetry
- 3. Pandora Particle Flow Algorithm
- 4. Particle Flow Performance at ILC
- 5. Particle Flow Performance at CLIC
- 6. Summary

LC Calorimetry Goals

- 3-4% jet energy resolution gives decent 2.6-2.3 σ W/Z separation.
- Sets a reasonable choice for LC jet energy minimal goal ~3.5%.
- For W/Z separation, not much further gain; limited by natural widths.

Jet E res.	W/Z sep
Perfect	3.1 σ
2%	2.9 σ
3%	2.6 σ
4%	2.3 σ
5%	2.0 σ
10%	1.1 σ

J. S. Marshall

Fine Granularity Particle Flow

In a typical jet:

- 60 % of jet energy in charged hadrons
- 30 % in photons (mainly from $\pi^0 \rightarrow \gamma \gamma$))
- I0 % in neutral hadrons (mainly n and K_L)

Traditional calorimetric approach:

- Measure all components of jet energy in ECAL/HCAL
- Approximately 70% of energy measured in HCAL: $\sigma_{\rm E}/{\rm E} \approx 60\% / \sqrt{{\rm E}({\rm GeV})}$

Fine granularity Particle Flow Calorimetry: reconstruct individual particles.

- Charged particle momentum measured in tracker (essentially perfectly)
- Photon energies measured in ECAL: $\sigma_{\rm E}/{\rm E} < 20\% / \sqrt{{\rm E}({\rm GeV})}$
- Only neutral hadron energies (10% of jet energy) measured in HCAL: much improved resolution.

Fine Granularity Particle Flow

<u>Hardware</u>: need to be able to resolve energy deposits from different particles.

• Require highly granular detectors (as studied by CALICE).

<u>Software</u>: need to be able to identify energy deposits from each individual particle.

• Require sophisticated reconstruction software to deal with complex events, containing many hits.

Particle Flow Calorimetry = HARDWARE + SOFTWARE

The challenge for fine granularity particle flow algorithms:

- Avoid double counting of energy from same particle
- Separate energy deposits from different particles

If <u>these hits</u> are clustered together with <u>these</u>, lose energy deposit from this neutral hadron (now part of track particle) and ruin energy measurement for this jet.

Level of mistakes, "confusion", determines jet energy resolution, <u>not</u> intrinsic calorimetric performance

Three basic types of confusion:

LC Detector Concepts

Tracker	: Silicon (5 layers)
Calorimetry	: fine granularity particle flow
ECAL + HCA	AL inside large solenoid

"Large"	: tracker radius 1.8m
B-field	: 3.5 T
Tracker	: TPC (220 layers)
Calorimetry	: fine granularity particle flow
ECAL + HCAL	inside large solenoid

il

Calorimeter Design

ECAL requirements:

- Minimise transverse spread of EM showers:
 - Small Molière radius & transverse segmentation
- Longitudinally separate EM/Hadronic showers:
 - Large ratio λ_I / X_0
- Identification of EM showers
 - Longitudinal segmentation.

HCAL requirements:

- Fully contain hadronic showers:
 - Small λ_{I}
- Resolve hadronic shower structure:
 - Longitudinal and transverse segmentation
- HCAL will be rather large:
 - Cost and structural properties important

Suitable absorber materials:

Material	X _o /cm	ρ _M /cm	λ _l /cm	λ_{I}/X_{0}
Fe	1.76	1.69	16.8	9.5
Cu	1.43	1.52	15.1	10.6
W	0.35	0.93	9.6	27.4
Pb	0.56	1.00	17.1	30.5

Software Design

- Fine granularity particle flow calorimetry lives or dies on quality of reconstruction of particles.
- Require high-performance software, in terms of:
 - Algorithmic sophistication, with reliable implementation.
 - CPU/memory usage; these are complex events with many hits.
- Almost all ILC/CLIC studies use code developed with Pandora C++ Software Development Kit.
- Consists of a framework library with carefully designed Application Programming Interfaces.
- Used to implement highly sophisticated particle flow reconstruction algs for LC-style detectors.
- Flexible, reusable with other pat-rec problems.

Typical topologies of simulated 250GeV jets in ILD_01_v05

Pandora Particle Flow Reconstruction

J. S. Marshall

10

Fine-Granularity Algorithms

Pandora PFA

ilc

Clustering and Topological Association 🧰 🦚

Pandora reconstruction philosophy: "It's easier to put things together than to split them up"

• Cone based clustering configured to create clusters that are fragments of single particles, rather than merging deposits from separate particles.

- Fragments merged together by series of algs, each following clear topological rules.
- Fine granularity and tracking capabilities of detector exploited to merge clusters that are clearly associated. Few mistakes made.

Track-Cluster Association

- Track-cluster association algs match cluster positions and directions with helix-projected track states at calorimeter.
- In very high-density jets, reach limit of "pure" particle flow: can't cleanly resolve neutral hadrons in hadronic showers.
- Identify pattern-recognition problems by looking for significant discrepancies between cluster E and track p.
- Choose to recluster: alter clustering parameters or change alg entirely until cluster splits and consistent E/p achieved.

J. S. Marshall

Reclustering Strategies

- Fragment removal algs aim to remove neutral clusters (those without track-associations) that are really fragments of charged (track-associated) clusters.
- Algs look for evidence of association between nearby clusters, merging the clusters together. In order to merge clusters, the change must bring about a satisfactory change in E/p χ^2 .

Particle Identification

- Particle ID is crucial for many physics analyses, and photon ID is vital for reconstruction of jet energies in non-compensating calorimeters. Currently available: charged lepton and photon ID.
- Some algs can perform dedicated reconstruction of specific particle types before standard reconstruction. Removal these particles from the event then helps to reduce confusion.

Typical 250GeV Jet in ILD_ol_v05:

Particle flow objects (PFOs) built from tracks and (associated) clusters using set of simple rules:

- Obtain list of reconstructed particles, with energies and particle ID.
- Calorimeter energy resolution not critical – most energy from tracks.
- Level of mistakes in building particles dominates jet energy resolution.
- Proceed by building jets and studying physics performance.

Can now assess performance of fine granularity particle flow using simulation...

- Jet energy resolution: $\sigma_{\rm E}/{\rm E} < 3.5\%$
- Benchmark performance using jet energy resolution in Z decays to light quarks.
- Use total energy to avoid complications of jet finding and no backgrounds included.
- Current performance, full GEANT4 simulations:

Ej	$RMS_{90}(E_j) / mean_{90}(E_j)$
45 GeV	3.7%
100 GeV	2.8%
180 GeV	2.9%
250 GeV	2.9%

RMS₉₀(E_{jj}) √2 $RMS_{90}(E_i) =$ $mean_{90}(E_i)$ mean₉₀(E_{ii})

Understanding Resolution

Switch some standard algs with MC cheating versions to understand resolution:

e.g. Perfect photon reconstruction

- Main performance driver varies with energy:
 - Low energy jets: resolution
 - High energy jets: confusion
 - Cross-over between 100 and 180 GeV
 - Very high energy: leakage will be important

- Know that modelling of hadronic showers is far from perfect, so can we believe PFA results?
- Previously compared PandoraPFA/ILD performance using 5 very different GEANT4 physics lists:

	Physics List	Jet Energy Resolution			
		45 GeV	100 GeV	180 GeV	250 GeV
	LCPhys	3.74 %	2.92 %	3.00 %	3.11 %
	QGSP_BERT	3.52 %	2.95 %	2.98 %	3.25 %
010	QGS_BIC	3.51 %	2.89 %	3.12 %	3.20 %
ults, 2	FTFP_BERT	3.68 %	3.10 %	3.24 %	3.26 %
r resu	LHEP	3.87 %	3.15 %	3.16 %	3.08 %
Oldei	rms	4.2 %	3.9 %	3.5 %	2.5 %

• Only a weak dependence < 5% (on the total resolution, not just the hadronic confusion term)

Study suggests Particle Flow is rather robust to modelling of hadronic showers

• To assess granularity requirements, vary ECAL Si pixel size and HCAL tile size in ILD, then examine jet energy resolutions obtained with particle flow reconstruction. e.g. HCAL tiles:

CLIC Background Suppression

2. Reconstructed particles, bkg energy 1.2TeV:

From ILC to CLIC

- $\sqrt{s=3TeV}$: detector occupancies increase and particle flow more difficult.
- Increase in beam-induced backgrounds, with a bunch spacing of only 0.5 ns.

3. Selected particles, bkg energy 85GeV:

- To assess jet energy resolution, and impact of PFO selection cuts, use samples of Z decays to light quarks without any overlaid backgrounds. Consider jet energies in range 45-1500GeV.
- At low energies, PFO selection cuts have significant impact on jet energy resolution. At higher jet energies, the jet energy reconstruction performance is basically unaffected by the cuts.

- Return to an important aim of fine granularity particle flow calorimetry and examine ability to separate W/Z hadronic decays via di-jet invariant mass reconstruction at CLIC.
- On-shell W/Z decay topology depends on energy, so obtain "mono-jet" topology at high energies:
 - Particle multiplicity does not change

more confusion!

• Boost means higher particle density

- W samples provided by $e^+e^- \rightarrow WW \rightarrow \mu v q q$ events in energy range 125-1000GeV. Used full GEANT4 simulation, PandoraPFA reconstruction and considered different levels of background.
- Additional reconstruction and selection procedures: removal of muon, removal of neutral fragments from background, jet reconstruction (kt algorithm) and jet angular selection cuts.

- The di-jet mass distributions obtained from the $e^+e^- \rightarrow WW \rightarrow \mu \nu qq$ event samples were then compared with those obtained from $e^+e^- \rightarrow ZZ \rightarrow \nu \nu qq$ event samples.
- Without background a 2 σ separation is maintained for W/Z energies between 125-1000GeV. The separation is reduced to about 1.7 σ when 60BX of $\gamma\gamma \rightarrow$ hadrons background is included.

- Reconstruction of missing momentum important in many physics analyses. The missing p_T resolution was quantified using $e^+e^- \rightarrow ZZ \rightarrow vvqq$ samples.
- Missing p_T was calculated from the vector sum of the momenta of all particles in the reconstructed jets. This was compared to the generated missing p_T of the two neutrinos.

 $m(\tilde{\chi}_1^0) = 340 \,\text{GeV}$ $m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^+) \approx 643 \,\text{GeV}$

il: de

- Fine Granularity Particle Flow Calorimetry is the baseline for the detector at the ILC or CLIC:
 - Such a detector can be built (at a cost).
 - Would provide unprecedented performance.
- Pandora Fine Granularity Particle Flow Algorithms:
 - Provide proof of principle over wide range of energies and physics processes.
 - Excellent performance from $\sqrt{s} = 500 \text{ GeV}$ to $\sqrt{s} = 3 \text{ TeV}$.
- Pandora SDK, and many Pandora algorithms, sufficiently generic to be used elsewhere.

Backup Slides

- The idea behind particle flow calorimetry is not new, and a similar idea was used by ALEPH:
 - ENERGY FLOW algorithm removes ECAL deposits from identified electrons/photons, leaving (mostly) charged and neutral hadrons.
 - Coarse HCAL granularity means neutral hadrons can only be identified as significant excesses of energy. Neutral hadron energy obtained by subtraction: $E_n = E_{calo} p_{track}$

- Similar approach used by a number of other collider experiments.
- FINE GRANULARITY PARTICLE FLOW significantly extends this approach:
 - Now directly reconstruct neutral hadrons.
 - Potentially much better performance.
 - But need highly granular calorimeters and sophisticated software.

PFA Performance

- Particle Flow reconstruction inherently non-Gaussian, so resolution presented in terms of rms90
 - Defined as "rms in smallest region containing 90% of events"
 - Introduced to reduce sensitivity to tails in a well defined manner
- For a true Gaussian distribution, $rms_{90} = 0.79\sigma$
- However, this can be highly misleading:
 - Distributions almost always have tails
 - Gaussian usually means fit to some region
 - G(rms₉₀) larger than central peak from PFA
- MC studies to determine equivalent statistical power indicate that:

 $\mathrm{rms}_{90} \approx 0.9\sigma_{\mathrm{Gaus}}$

 Now use rms₉₀ as a sensible convention, but does not mean PFA produces particularly large tails.

- ECAL ~15%/√E
- HCAL ~55%/√E

- i) PFA always wins over purely calorimetric approach
- ii) Effect of leakage clear at high energies

il de

	LEP 2	ILC 0.5 TeV	CLIC 0.5 TeV	CLIC 3 TeV	
L [cm ⁻² s ⁻¹]	5×10 ³¹	2×10 ³⁴	2×10 ³⁴	6×10 ³⁴	
BX/train	4	2670	350	312	
BX sep	247 ns	369 ns	0.5 ns	0.5 ns	Drives timing
Rep. rate	50 kHz	5 Hz	50 Hz	50 Hz	Requirements
L/BX [cm ⁻²]	2.5×10 ²⁶	1.5×10 ³⁰	. × 0 ³⁰	3.8×10 ³⁰	detector
γγ→ Χ / ΒΧ	neg.	0.2	0.2	3.2	
σ _x /σ _y	240 / 4 mm	600 / 6 nm	200 / 2 nm	40 / I nm	

- Beam-related background:
 - Small beam-profile at IP leads to very high E-field
 - Beamstrahlung
 - Pair-background
 - Interactions of real and virtual photons
 - $\gamma\gamma \rightarrow$ hadrons "mini jets"
 - Integrate over multiple BXs of $\gamma\gamma \rightarrow$ hadrons
 - 19TeV visible energy per 156ns bunch train

- Pair background largely affects very low angle region.
- Background in calorimeters and central tracker dominated by $\gamma\gamma \rightarrow$ hadrons "mini-jets".
- At 3 TeV, average 3.2 events per BX (approximately 5 tracks per event).
- For entire bunch-train (312 BXs):
 - 5000 tracks (mean momentum 1.5 GeV) giving total track momentum : 7.3 TeV
 - Total calorimetric energy (ECAL + HCAL) : 19 TeV
- Largely low p_T particles, but an irreducible background.

CLIC PFO Selection

 Pandora algs cluster energy in detector into individual particles, which can be identified as background or from underlying interaction.

- Cannot place timing cuts on individual hits prior to reconstruction, but can cut on timing and p_T properties of reconstructed PFOs.
- PFOs from physics event have range of p_T values and times close to t_0 .

Cut	$\gamma\gamma \rightarrow hadrons$	500 GeV di-jet	
	Energy	Energy	Energy
	(GeV)	(GeV)	loss
No cut	1210	500.2	0%
Loose	235	498.8	0.3%
Default	175	498.0	0.5%
Tight	85	496.1	0.8%
$p_{\rm T} > 3.0 {\rm GeV}$	160	454.2	9.2%

Solid histograms show distributions for $ZZ \rightarrow qq VV$ events at $\sqrt{s}=3$ TeV, whilst dashed histograms are for pile-up from $\gamma\gamma \rightarrow$ hadrons

- Fake missing momentum can result from limitations in detector coverage and from failed reconstruction of particle momenta. Quantified using samples of Z decays to light quarks.
- Examine distribution of single component (e.g. x-component) of the fake missing momentum with and without background. Resolution then obtained by calculating RMS₉₀ of distribution.

