KOTO CsI calorimeter

Sato Kazufumi (Osaka Univ.)

22 Avril in CHEF2OI3

contents

- what is KOTO?
- KOTO Csl calorimeter
- shower shape on Csl

what's KOTO?

$K_{L} \rightarrow \Pi^{0} v \bar{v}$

KOTO : $\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)$ measurement in Japan
 व

d in SM, CP violation is caused by imaginary part of CKM matrix elements

$$
\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{V}\right) \propto\left|\operatorname{Im}\left(V_{t d}\right)\right|^{2}
$$

As theoretical uncertainty: I~2\% only
\Rightarrow sensitive to new physics beyond SM
is SM expectation : $\mathbf{B r}\left(\mathbf{K}_{\mathbf{L}} \rightarrow \boldsymbol{T}^{\mathbf{0}} \mathbf{v} \overline{\mathbf{v}}\right)=\mathbf{3 e} \mathbf{e} \boldsymbol{I I}$ upper limit = 2.6e-8 (90\% CL) by KEK E39 I A
\Rightarrow high intensity Kı beam @ J-PARC

strategy

- $K_{L} \rightarrow \pi^{0} V \bar{V}$ has an unique final state $2 \gamma+P t$

strategy

Charged Veto

γ

$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} V \overline{\mathrm{~V}}$ has an unique final state $2 \gamma+\mathbf{P t}$

strategy

we can reconstruct π^{0} from energies and hit positions of $2 \gamma \mathrm{~s}$, assuming $M_{\gamma \gamma}=M_{\pi 0}$

reco. π^{0}

Pt \downarrow

$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} V \overline{\mathrm{~V}}$ has an unique final state $2 \gamma+P_{t}$

KOTO detector
 CsI calorimeter

gamma energy

KOTO CsI calorimeter

Csl calorimeter

- diameter : 1.9 m
- consist of 2716 crystals
- used in KTeV exp. at Fermilab
- undoped Csl
-length:50cm(=27Xo)
\rightarrow ensure good energy resolution $=\operatorname{good} \pi{ }^{0}$ reconstruction
- cross section: $2.5 \times 2.5 \mathrm{~cm}, 5 \times 5 \mathrm{~cm}$
- smaller than $\mathrm{R}_{\mathrm{M}}(=3.57 \mathrm{~cm})$
\rightarrow shower shape information

Csl calorimeter resolution

- measured using electrons from $\mathrm{K}_{\mathrm{L}} \rightarrow \Pi \mathrm{TeV}$ decay in 2012, before installing veto detectors

Csl calorimeter resolution

- tested using electrons from $\mathrm{K}_{\mathrm{L}} \rightarrow \pi \mathrm{eV}$ decay in 2012, before installing veto detectors

$-I m$	$0 m$	$1 m$	$2 m$	$3 m$	$4 m$	$5 m$	$6 m$	$7 m$

$7 m$

E/p width

Csl calorimeter resolution

E resolution

electron momentum [MeV]
subtract the contribution of materials and spectrometer resolution

$$
\sigma_{E} / E=I .9 \% / \sqrt{E}[G e V]
$$

pos. resolution

position resolution

pos. resolution

subtract the contribution of materials and spectrometer resolution
$\sigma_{x}[\mathrm{~mm}]=1.8 \oplus 2.8 / \sqrt{ } E_{[G e V]} \oplus 1.73 / E_{[G e V]}$

Shower Shape Information

- fusion BG discrimination
- Y angle discrimination

shower shape cut

shower shape information is useful to reject some types of backgrounds

 ex) $\mathbf{2} \boldsymbol{\pi}^{\mathbf{0}}$ _fusion

fused cluster

fused cluster

single photon cluster

observed shower (data)
=E_measured[MeV]

compare

$$
\chi^{2}=\sum_{C s I}\left(\frac{E_{\text {measured }}-E_{\text {simulated }}}{R M S_{\text {simulated }}}\right)^{2}
$$

fusion BG suppression

shape X^{2}

90% BGs are rejected with 85% signal acceptance

Y angle from shower shape

can derive γ incident angle from shower shape

η background

ex) beam neutron interacts with material $\Rightarrow \boldsymbol{\eta} \boldsymbol{\rightarrow} \boldsymbol{2} \boldsymbol{\gamma}$
we reconstruct 2γ vertex assuming π^{0}, but actually η
$\Theta_{\text {rec }}<\Theta_{\text {true }}$
\Rightarrow angle discrimination helps $\boldsymbol{\pi}^{\mathbf{0}}$ identification
strategy for angle discri.

likelihood

calculate Likelihood for each assumption (L_{π}, L_{η})

$$
L_{i}=\prod_{j ; \gamma} \prod_{x, y} \prod_{k ; \text { row }} P\left(e_{k} \mid E_{j}, d_{k}, \theta_{i j}, \phi_{j}\right)
$$

$$
(i=\pi, \eta)
$$

PDFs are prepared for various E, Φ, θ

simulation

2D PDF (case of n)

2D PDF (case of π^{0})

likelihood ratio

apply cut for likelihood ratio

likelihood ratio
η BG rejection

signal acceptance
94% of η BGs can be rejected with 90% efficiency

summary

- $\mathrm{KOTO}=$ measurement for $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{vv}$
- observe 2γ from π^{0} with the Csl calorimeter
- beam test in 2012
$\sigma_{E} / E=1.9 \% / \sqrt{ } E_{[G e V]}$
$\sigma_{x}[\mathrm{~mm}]=1.8 \oplus 2.8 / \sqrt{ } E_{[G e V]} \oplus 1.73 / E_{[G e V]}$
- shower shape information is useful - shape chi2
- $2 \pi 0$ fusion BG \rightarrow x I/IO (85\% signal acc.)
- angle discrimination
- η BG $\rightarrow \times$ I/20 (90% signal acc.)

back up

ene. and pos. resolution

calibration constant

- in data analysis,

Csl calibration constants are decided using Ke3 calibration method.

$$
\chi^{2}=\sum_{e v e n t}\left(\frac{E_{c h a m b e r}-E_{C s I}}{\sigma}\right)^{2}
$$

E resolution

E(by Csl) / p(by spectro.)

source of energy (MC study)

cluster energy / gamma energy

FADC ground noise

- FADC pedestal fluctuates due to ground noise ($\sigma \sim 2.05 \mathrm{cnt}$) $=\sim 0.2 \mathrm{MeV}$

RMS of ground noise

piO reconstruciton

how to reconstruct π^{0}

Csl calorimeter

how to reconstruct π^{0}

how to reconstruct π^{0}

clustering procedure

clustering

clustering

clustering

clustering

η backgrounds

impact of angle discrimination

MC reproduction

Al target run in E391A

Probability Density Function prepare PDF for each incident angle

likelihood ratio

apply cut for likelihood ratio

95% of 20° difference can be separated with 90% efficiency

shape chi2

calibration I: cosmic

calibration $2: K_{L} \rightarrow 3 \pi^{0}$

π^{0} mass constraint

$$
\begin{aligned}
& \left(E_{1}+E_{2}\right)^{2}-\left(\vec{P}_{1}+\vec{P}_{2}\right)^{2}=M_{\pi^{0}}^{2} \\
& \left(E_{3}+E_{4}\right)^{2}-\left(\vec{P}_{3}+\vec{P}_{4}\right)^{2}=M_{\pi^{0}}^{2} \\
& \left(E_{5}+E_{6}\right)^{2}-\left(\vec{P}_{5}+\vec{P}_{6}\right)^{2}=M_{\pi^{0}}^{2}
\end{aligned}
$$

K_{L} mass constraint

$\left(\sum E_{i}\right)^{2}-\left(\sum P_{i}\right)^{2}=M_{K_{L}^{0}}^{2}$
\rightarrow can calculate a given γ energy from other γ s energy

Reconstructed Mass with 6 Gamma Event

Waveform readout

- 14bit FADC

- to record waveform
- to form triggers digitally

Neutral beam line

