Simulation of Showers with Geant4

CHEF2013, 22-25 April 2013, Paris

Andrea Dotti (SLAC) on behalf of EM and HAD Working Groups

Outline

- **Electromagnetic** showers simulation
- Hadronic showers simulation
- Conclusions

Geant4 Validation portal (EM & HAD): http://www.geant4.org/geant4/results/results.shtml LHC specific Physics Validation website: http://sftweb.cern.ch/validation/

Electromagnetic showers

Recent improvements (versions 9.5 and 9.6)

- Physics modeling improvements:
 - Finalized unification of standard and low-energy packages
 - Multiple and single scattering models improvements
 - New default Seltzer-Berger model for bremsstrahlung
 - Relativistic LPM corrections for bremsstrahlung and gamma conversion
- Wentzel model is used for all charged particles (except e[±] below 100MeV and Opt3 builder)
 - Long Rutherford tail better described
 - Fix for very rare unphysical scattering angles for small step in low density materials (ATLAS report)
 - Best available model for trackers (LHCb requirement)

Recent EM related publications: http://iopscience.iop.org/1742-6596/396/2/022013 http://iopscience.iop.org/1742-6596/331/3/032029 http://www.aesj.or.jp/publication/pnst002/data/898-903.pdf

SI AC

Bremsstrahlung: Seltzer-Berger

°) Bremsstrahlung spectrum (1 MeV e G4standard G4penelope G4livermore experiment Increased number of interpolation PENELOPE \cap 10⁻³ points for d σ /d Ω • Updated screening functions Intensity kdn/dk dΩ 0 • • Improved angular-distributions 10⁻⁵ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Photon energy (MeV)

Simplified Sampling Calorimeter Response (ATLAS barrel type)

-SLAC

Geant4 9.6: EM Physics builders for HEP

EM models available for:

- γ , e[±], μ^{\pm} , π^{\pm} , K[±], p, Σ^{\pm} , Ξ^{-} , Ω^{-} , anti(Σ^{\pm} , Ξ^{-} , Ω^{-})
- τ^{\pm} , B^{\pm} , D^{\pm} , D_{s}^{\pm} , Λ_{c}^{+} , Σ_{c}^{+} , Σ_{c}^{++} , Ξ_{c}^{++} , $\operatorname{anti}(\Lambda_{c}^{+}, \Sigma_{c}^{+}, \Sigma_{c}^{++}, \Xi_{c}^{+})$
- d, t, He3, He4, Genericlon, anti(d, t, He3, He4)

Constructor	Components	Comments
G4EmStandardPhysics	Default (QGSP_BERT, FTFP_BERT)	ATLAS, and other HEP productions, other applications
G4EmStandardPhysics_option I	Fast option to simple step limitation, cuts used by photon processes (FTFP_BERT_EMV)	Similar to one used by CMS, good for crystals, not good for sampling calorimeters
G4EmStandardPhysics_option2	Experimental : updated photon models and bremsstrahlung on top of Opt I	Similar to one used by LHCb

Requirements

Geant4 is used by all LHC experiments

Requirements on hadronic models:

- precise description of showers in calorimeters
- precise description of interactions in thin-layers (trackers)

Description of hadronic showers in calorimeters

- Response (e/pi ratio): Jet-energy scale, systematic uncertainty
- Longitudinal: punch-through in muon systems, jet-calibration ("weighting" techniques), imaging calorimeters
- Lateral: cluster identification, particle-flow algorithms, jet-structure, imaging calorimeters
- Resolution: hadronic decay of W boson

si ac

Main hadronic models

Developers' focus is on **few key models** covering energy range of LHC from MeV to TeV

Theory/Phenomenology based models:

- String model (>3GeV): Fritiof (FTF)
- Intra-nuclear cascade (<10GeV): Bertini Cascade (BERT)
- **Pre-compound/de-excitation** (<200MeV): Preco (P)

This combination gives best (simultaneous) description of:

- thin-target data (used for tuning)
- test-beams -mainly LHC, CALICE- (used for validation)
- LHC collision data

Response (pions)

Response stable within
<3% (2010-2012)

- HP neutron does not effect response for light materials
- HP increases response on sci based calos

Longitudinal development (pions)

- Hadronic shower length slightly reduced (~5%) in 9.6.p01
- No effect with HP (expected)
- Fritiof predicts longer showers w.r.t. QGS ("historical" G4 string model)

Further tuning of Fritiof ongoing

 Note: LHC calorimeters granularity too coarse for detailed validation (collaboration w/ CALICE well established)

See talk from V. Uzhinskiy in this session for FTF update

Lateral development (pions)

- Latest G4 version predicts wider showers 10-15%
- Fundamental role of Bertini cascade
- HP model further increases shower width
- Note: QGSP_BERT wider 4-10 GeV (where BERT is used) in FTFP_BERT cascade code used up to 4 GeV. CALICE experimental data needed in this region

SLAC

See talk from D.Wright in this session

Status of Geant4 for calorimeters

• However high precision LHC data show some additional work is needed to improve shower shape (lateral) description

- Multiple Scattering is the challenging process for all MC simulation codes
 - Significant improvements achieved in latest G4 versions
 - Continuing effort to further improve and validate available models
- Hadronic physics considered satisfactory (precision <10%, shapes <20%):
 - Validation with LHC data shows Fritiof and Bertini are the "backbone" of G4 hadronics physics
 - Response and resolution stable, in latest version longitudinal shapes slightly shorter, lateral showers larger
 - Shower shapes: level of agreement probably ok for coarser LHC calorimeters, additional tuning for high granularity calorimeters
 - Increasing interest for HP (low-E neutrons) models for specific observables (lateral width, timing). Drawback: model with high CPU cost

Backup Slides Additional Material

Geant4 muons versus L3 data (M.Schenk, CERN summer student)

Endpoint Displacement of μ^{-} in the r ϕ Plane

geant4-09-05-ref-09, All MSC models, ARealisticRun, Gaussian fits

ATLAS Talk on Higgs

Di-photon mass resolution

Improved and pileup stable mass resolution by relying on calorimeter pointing for the photon direction measurement

Calorimeter resolution corrections derived from Z decay to electrons

- Add effective constant term to perfect MC resolutions through smearing
- 1% in barrel, 1.5 2.5% in endcap

Uncertainty on photon energy resolution (14 - 23%):

Sampling term (from test-beam), 'effective' constant term and $e \rightarrow \gamma$ extrapolation (material upstream calorimeter)

CERN Seminar, 15 April 2013

CMS Talk on Higgs

Ecal performance $m_{\gamma\gamma}^2 = 2E_1E_2(1-\cos\alpha)$

- Very good ECAL performance in 2012
- $Z \rightarrow ee$ mass resolution better than 1.2% for electrons with low bremsstrahlung in the barrel.
- Stable performance already using promptly reconstructed data

Cu/LAr 9.6.p01

Fe/Sci FTFP_BERT

Study of radial profile

Scintillator based calorimeters

Max 4% differences depending on Birks' parameters choice