Improving the Medium and Low Energy Physics Models in Geant4

Calorimetry at the High Energy Frontier
Paris
22-25 April 2013

Dennis Wright (SLAC) on behalf of the Geant4 Hadronic Working Group

Medium and Low Energy Hadronic Processes in Calorimetry

- Shower parameters strongly affected by details in medium and low energy hadronic models (< 10 GeV)
 - shower width (cascade)
 - energy resolution (cascade, precompound and de-excitation)
 - energy deposit (de-excitation and low energy neutrons)
 - time structure (low energy neutrons)
- Given this sensitivity, it's important to get the details right
 - over past few years agreement with LHC test beam data and Calice fine-grained calorimeter has improved
 - comes from improved or added physics, not tuning
- We give here the highlights of these physics improvements

Effect of Intra-nuclear Cascade

Energy Resolution Improvement (LArCu)

Resolution

Bertini-style Intra-nuclear Cascade (1)

- Now an "all-hadron" code
 - all long-lived hadrons from π^0 to Ω^- up to ~10 GeV
- γ : improved photo-nuclear process
 - gammas from ~10 MeV to 10 GeV now interact directly with nuclei using the cascade
 - above 10 GeV, the FTF string model is used, but first the gamma is converted to a pion
- And some others, too
 - electro-nuclear for e⁻/e⁺ (G4ElectroVDNuclearModel)
 - as in old model, uses CHIPS cross sections and virtual gamma generation
 - uses Bertini-style cascade to interact gamma below 10 GeV, FTF above 10 GeV
 - muon-nuclear for μ^+/μ^- (G4MuonVDNuclearModel)

γ Cu -> p X (300 MeV) with Bertini

Bertini-style Intra-nuclear Cascade (2)

Interfaces

- Bertini works fairly well outside its original range of applicability (100 MeV – 5 GeV)
- but other codes do better at low energies (G4Precompound), and at high energies (Fritiof)
- interfaces to both these codes are now available
- G4Precompound interface
 - see later slide
- Rescattering interface
 - secondaries from first high energy interaction by string model (Fritiof) are often too high in energy to be passed to nuclear precompound model
 - should use cascade instead
 - interface for this now exists and is being validated

INCL++

- Lineage: Liege intra-nuclear cascade -> INCL -> INCL++
- Latest Geant4 version contains many improvements
 - originally for pion- and nucleon-induced cascades between 100 MeV – 3 GeV
 - now completely re-designed, written in C++
 - can now do light ion projectiles (up to and including ¹²C)
 - uses Geant4 de-excitation package to bring residual nucleus to ground state, improve light cluster emission
- An excellent alternative to G4BinaryCascade or G4QMD
 - especially good for spallation energies
 - new physics lists soon to be available using this model
- Plans to extend to higher energies, more projectile types

Ion-ion Collisions in INCL++

G4NeutronHP Models

- The old standard for elastic, inelastic and capture below 20 MeV, but now more data library options
 - the neutron database G4NDL used to be a mix of 8 different evaluated databases
 - now based entirely on ENDF/B VII
 - each of the other 7 databases (JENDL, MENDL, CENDL, etc.) available for substitution
- Extended to do low energy reactions on nuclei bound in molecules
- Extension to low energy charged particles (p, d, α) planned
 - prototype for protons available, still being tested
 - α model expected sometime this year
 - will have same data sources as neutronHP

High Precision Neutrons Comparing Geant4 and MCNPX

Effect of Low Energy Neutrons on Showers

LEND Models

- New alternative to Neutron HP
 - based on GIDI (General Interaction Data Interface) a new format for nuclear data using the Livermore database
 - ENDF, JEFF, JENDL, ENDL will be converted to this format
- G4LEND models are interfaces to GIDI
 - all NeutronHP models have counterparts in LEND (elastic, inelastic, capture, fission)
 - available for use, but not all DBs are converted to GIDI format yet
- Performance
 - 5 X faster than NeutronHP due to pre-calculated Doppler broadening

G4Precompound Model

- Many improvements over past few years
 - our best model for p, n induced reactions below 170 MeV
 - used to de-excite nucleus after FTF, QGS high energy models, binary cascade
 - after precompound stage, calls evaporation, multi-fragmentation, Fermi break-up
- Interfaced to other cascades
 - Bertini cascade -> BERP
 - better than Bertini's internal precompound model for E < 50 MeV
 - my eventually help to bring shower resolution closer to data, as it produces fewer low energy nucleons
- G4 deexcitation package interfaced to INCL++ in order to extend its range down to 0 and improve light fragment emission

G4Precompound Validation: 22 MeV p+Fe -> n+X

Particle Stopping and Capture

- New stopping models (to replace old CHIPS models)
 - G4PiMinusAbsorptionBertini
 - G4KaonMinusAbsorptionBertini
 - G4SigmaMinusAbsorptionBertini
 - G4AntiProtonAbsorptionFritiof
- Improved mu-stopping
 - current model is quite simple, with too-soft neutron spectrum
 - replace with Bertini using both one and two nucleon muon absorption
 - expected by 1st half of this year

Radioactive Decay

- New data set required
 - RadioactiveDecay3.6 (available in download area)
 - 534 nuclear states now have precise beta decay spectrum shapes (classified as 1st, 2nd, or 3rd unique forbidden)
- Activation now added
 - good agreement with proton activation data
- Directional biasing of decay daughters
- Production and propagation of isomers/metastable nuclear states
 - coming 1st half of this year

Deprecated Models

- LEP, HEP (Gheisha-style) models are deprecated
 - better models now available to cover all particles, all energies formerly handled by L/HEP
 - after Geant4 10.0, physics lists using LEP, HEP models will not work
- CHIPS (Chiral Invariant Phase Space) code deprecated
 - cross sections and other important pieces of code extracted into other models
 - physics lists using original CHIPS code will disappear
 - this includes some stopping and nuclear de-excitation code

Summary

- Shower shapes, time structure and energy resolution depend strongly on medium and low energy hadronic models
- During the past few years agreement of Geant4 predictions with data from various calorimeters has improved
 - ATLAS, Calice, CMS
 - main reason: improved physics, not tuning
- Existing models have improved
 - Bertini-style cascade, G4Precompound model, NeutronHP model, G4RadioactiveDecay
- Alternate models added
 - INCL++ cascade, G4LEND neutron low energy neutron models