Detection of the Atmospheric Showers with Telescope Array (TA) experiment

H. Sagawa ICRR, Univ. of Tokyo on behalf of TA collaboration

> CHEF2013 in Paris April 25, 2013

H. Sagawa

Outline

Physics by highest energy cosmic rays

TA experiment

Results from TA

Summary

2013/4/25

Bottom-up scenarios

New Magnetars

Detectors of highest energy cosmic rays

Telescope Array (TA) Collaboration

T. Abu-Zayyad¹, R. Aida², M. Allen¹, R. Anderson¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, D.R. Bergman¹, S.A. Blake¹, R. Cady¹, B.G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, E.J. Cho⁴, W.R. Cho⁷, H. Fujii⁸, T. Fujii⁹, T. Fukuda³, M. Fukushima^{10,11}, W. Hanlon¹, K. Hayashi³, Y. Hayashi⁹, N. Hayashida¹⁰, K. Hibino¹², K. Hiyama¹⁰, K. Honda², T. Iguchi³, D. Ikeda¹⁰, K. Ikuta², N. Inoue¹³, T. Ishii², R. Ishimori³, H. Ito²¹, D. Ivanov^{1,14}, S. Iwamoto², C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹⁶, T. Kanbe², K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami⁹, S. Kawana¹³, E. Kido¹⁰, H.B. Kim⁴, H.K. Kim⁷, J.H. Kim¹, J.H. Kim⁴, K. Kitamoto⁶, S. Kitamura³, Y. Kitamura³, K. Kobayashi⁵, Y. Kobayashi³, Y. Kondo¹⁰, K. Kuramoto⁹, V. Kuzmin¹⁶, Y.J. Kwon⁷, J. Lan¹, S.I. Lim²⁰, S. Machida³, K. Martens¹¹, T. Matsuda⁸, T. Matsuura³, T. Matsuyama⁹, J.N. Matthews¹, M. Minamino⁹, K. Miyata⁵, Y. Murano³, I. Myers¹, K. Nagasawa¹³, S. Nagataki²¹, T. Nakamura²², S.W. Nam²⁰, T. Nonaka¹⁰, S. Ogio⁹, M. Ohnishi¹⁰, H. Ohoka¹⁰, K. Oki¹⁰, D. Oku², T. Okuda²³, M. Ono²¹, A. Oshima⁹, S. Ozawa¹⁷, I.H. Park²⁰, M.S. Pshirkov²⁴, D.C. Rodriguez¹, S.Y. Roh¹⁹, G. Rubtsov¹⁶, D. Ryu¹⁹, H. Sagawa¹⁰, N. Sakura⁹, A.L. Sampson¹, L.M. Scott¹⁴, P.D. Shah¹, F. Shibata², T. Shibata¹⁰, H. Shimodaira¹⁰, B.K. Shin⁴, J.I. Shin⁷, T. Shirahama¹³, J.D. Smith¹, P. Sokolsky¹, B.T. Stokes¹, S.R. Stratton^{1,14}, T. Stroman¹, S. Suzuki⁸, Y. Takahashi¹⁰, M. Takeda¹⁰, A. Taketa²⁵, M. Takita¹⁰, Y. Tameda¹⁰, H. Tanaka⁹, K. Tanaka²⁶, M. Tanaka⁹, S.B. Thomas¹, G.B. Thomson¹, P. Tinyakov^{16,24}, I. Tkachev¹⁶, H. Tokuno³, T. Tomida²⁷, S. Troitsky¹⁶, Y. Tsunesada³, K. Tsutsumi³, Y. Tsuyuguchi², Y. Uchihori²⁸, S. Udo¹², H. Ukai², G. Vasiloff¹, Y. Wada¹³, T. Wong¹, M. Wood¹, Y. Yamakawa¹⁰, R. Yamane⁹, H. Yamaoka⁸, K. Yamazaki

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Hanyang University, ⁵Tokyo University of Science, ⁶Kinki University, ⁷Yonsei University, ⁸Institute of Particle and Nuclear Studies, KEK, ⁹Osaka City University, ¹⁰Institute for Cosmic Ray Research, University of Tokyo, ¹¹Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, ¹²Kanagawa University, ¹³Saitama University, ¹⁴Rutgers University, ¹⁵Tokyo City University, ¹⁶Institute for Nuclear Research of the Russian Academy of Sciences, ¹⁷Waseda University, ¹⁸Chiba University, ¹⁹Chungnam National University, ²⁰Ewha Womans University, ²¹Yukawa Institute for Theoretical Physics, Kyoto University, ²²Kochi University, ²³Ritsumeikan University, ²⁷RIKEN, ²⁸National Institute of Radiological Science, ²⁹Ehime University

Telescope Array (TA) Collaboration

T. Abu-Zayvad¹, R. Aida², M. Allen¹, R. Anderson¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, D.R. Bergman¹, S.A. Blake¹, R. Cady¹, B.G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, E.J. Cho⁴, W.R. Cho⁷, H. Fujii⁸, T. Fujii⁹, T. Fukuda³, M. Fukushima^{10,11}, W. Hanlon¹, K. Hayashi³, Y. Hayashi⁹, N. Hayashida¹⁰, K. Hibino¹², K. Hiyama¹⁰, K. Honda², T. Iguchi³, D. Ikeda¹⁰, K. Ikuta², N. Inoue¹³, T. Ishii², R. Ishimori³, H. Ito²¹, D. Ivanov^{1,14}, S. Iwamoto², C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹⁶, T. Kanbe², K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami⁹, S. Kawana¹³, E. Kido¹⁰, H.B. Kim⁴, H.K. Kim⁷, J.H. Kim¹, J.H. Kim⁴, K. Kitamoto⁶, S. Kitamura³, Y. Kitamura³, K. Kobayashi⁵, Y. Kobayashi³, Y. Kondo¹⁰, K. Kuramoto⁹, V. Kuzmin¹⁶, Y.J. Kwon⁷, J. Lan¹, S.I. Lim²⁰, S. Machida³, K. Mar 1. Matthews¹, M. Minamino⁹, K. Miyata⁵, Y. Murano³, I. Myers¹, Ohnishi¹⁰, H. Ohoka¹⁰, K. Oki¹⁰, D. ~140 researchers h²⁰, T. Nonaka¹⁰, S. Ogio⁹, M. H. Park²⁰, M.S. Pshirkov²⁴, D.C. Rodriguez¹, S.Y. Roh¹⁹, G. Rubtsov¹⁶, L. ..., a , ... Sugara , ... Sugara , ... Sugara , ... J. Scott¹⁴, P.D. Shah¹, F. Shibata², T. Shibata¹⁰, H. Shimodaira¹⁰, B.K. Shin⁴, J.I. Shin⁷, T. Shirahama¹³, J.D. Smith¹, P. Sokolsky¹, B.T. Stokes¹, S.R. Stratton^{1,14}, T. Stroman¹, S. Suzuki⁸, Y. Takahashi¹⁰, M. Takeda¹⁰, A. Taketa²⁵, M. Takita¹⁰, Y. Tameda¹⁰, H. Tanaka⁹, K. Tanaka²⁶, M. Tanaka⁹, S.B. Thomas¹, G.B. Thomson¹, P. Tinyakov^{16,24}, I. Tkachev¹⁶, H. Tokuno³, T. Tomida²⁷, S. Troitsky¹⁶, Y. Tsunesada³, K. Tsutsumi³, Y. Tsuyuguchi², Y. Uchihori²⁸, S. Udo¹², H. Ukai², G. Vasiloff¹, Y. Wada¹³, T. Wong¹, M. Wood¹, Y. Yamakawa¹⁰, R. Yamane⁹, H. Yamaoka⁸, K. Yamazaki⁹, J. Yang²⁰, Y. Yoneda⁹, S. Yoshida¹⁸, H. Yoshii²⁹, X. Zhou⁶, R. Zollinger¹, Z. Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Hanyang University, ⁵Tokyo University of

Science, ⁶Kinki ¹⁰Institute for Cosi University of Toky for Nuclear Resea University, ²⁰Ew ²³Ritsumeikan Uni

ity University, s of the Universe, rersity, ¹⁶Institute Ingnam National ochi University, okyo, ²⁶Hiroshima

City University, ²⁷RIKEN, ²⁸National Institute of Radiological Science, ²⁹Ehime University

Telescope Array site

Utah in USA 39.3°N, 112.9°W Altitude ~1400 m

The largest cosmic ray (CR) observatory in northern hemisphere

> US Dept of State Geographer 2013 Google 2009 GeoBasis-DE/BKG Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Google earth

Fluorescence Detector stations

2013/4/25

All three stations: observation since Nov., 2007

FD: Mirrors & cameras

FD as an absorption calorimeter

3. Telescope calibration

of photons \rightarrow ADC channels

Example

Surface Detector

WLS fibers

- 2 layers of
 - plastic scintillator
 - 3 m² /layer
 - 1.2 cm thick/layer
- WLS fibers
 - $-1 \,\mathrm{mm} \,\phi$
 - ~100 fibers/layer
- 1 PMT for 1 layer
 - 1-inch ϕ
 - 50 MHz FADC readout

Data communication to a com. tower by wireless LAN (2.4 GHz)

Power supply for ~5 W by Solar system

~100% duty cycle→ More statistics than FD

The full array in operation since March , 2008

Hybrid observation with FD for ~5 years

Scintillator box

GPS

An example of an air shower observed with surface detectors

An example of an air shower observed with surface detectors

SD Analysis: Lateral Density Fit

- Fit with empirical LDF
- Charge density at 800 m (S800)

First estimation of SD energy

Monte Carlo \rightarrow Energy table $E'_{SD} = E'_{SD}(S800, \theta)$

SD energy resolution 20% (E > 10^{19} eV)

SD energy scale

• For hybrid events

Energy spectrum

Energy spectrum

Mass composition

Longitudinal shower profile

Mass composition

Longitudinal shower profile

deep

Correlations with AGNs

Isotropy model expectation: 5.9 events Chance probability to observe 11 events: 2%

Correlations with AGNs

Summary

- TA: the largest CR detector in the northern hemisphere
- The SDs and FDs: operating stably for ~5 years
- Measured energy spectrum, Xmax and arrival directions of UHECRs
 - Consistent with proton model with GZK suppression

backup

2013/4/25

Electronics

- Main board
 - FADC
 - 20 MHz sampling
 - 12 bit
 - Charge controller
- WLAN modem
 Under main board

Calibration

- Background monitor
 - Each distribution update per 10 min.
 - Temperature coefficient of gain: ~ -0.8%/°C
 - Temperature meas. per 1 min.

Trigger rate

- Level-0 trigger (>0.3 MIPs): ~700 Hz
- Level-1 trigger (>3 MIPs): ~20 Hz
- Level-2 trigger (shower trigger): ~600/day
 - >3 MIPs
 - neighboring 3 detectors
 - <8 μ sec window

Linearity measurement by LED

- 2 LEDs per layer
 - $F(x_1)$: only LED1 is ON
 - $F(x_2)$: only LED2 is ON
 - F(x₁+x₂): both LED1 and LED2 are ON
- This case
 - We know F(x₁) and F(x₂) are not saturated

- But $F(x_1+x_2)$ is saturated.

Linearity measurement by data

Electron Light Source (ELS)

Source of electron beam = end-to-end energy calibration of FD

Output power=40 MeV \times 10⁹e-/pulse \times 0.5 Hz, pulse width: 1 μ sec