DEVELOPMENT OF A 3-D CUBIC CRYSTAL CALORIMETER FOR SPACE

Oscar Adriani INFN and University of Florence

Paris, April 25th, 2013

Some of the Cosmic-Ray 'mysteries'

High energy nuclei

- "Knee" structure around ~ PeV
 - Upper energy of galactic accelerators (?)
 - Energy-dependent composition
- Structures in the GeV TeV region recently discovered for p and He
 - Composition at the knee may differ substantially from that at TeV
- Spectral measurements in the knee region up to now are only indirect
 - . Ground-based atmospheric shower detectors
 - High uncertainties

A direct spectral measurement in the PeV region requires great acceptance (few m²sr) and good energy resolution for hadrons (at least 40%)

High energy Electrons+Positrons

- Currently available measurements show some degree of disagreement in the 100 GeV 1
 TeV region
- . Cutoff in the TeV region?

Direct measurements require excellent energy resolution (~%), a high e/p rejection power (> 10⁵) and large acceptance above 1 TeV

Our proposal for an 'optimal' CR detector

- A **3-D**, **deep**, **homogeneous and isotropic calorimeter** can achieve these design requirements:
 - depth and homogeneity to achieve energy resolution
 - isotropy (3-D) to accept particles from all directions and increase GF

Proposal: a cubic calorimeter made of small cubic sensitive elements

- can accept events from 5 sides (mechanical support on bottom side) \rightarrow GF * 5
- segmentation in every direction gives e/p rejection power by means of topological shower analysis
- cubic, small (~Moliére radius) scintillating crystals for homogeneity
- gaps between crystals increase GF and can be used for signal readout
 - small degradation of energy resolution
- must fulfill mass&power budget of a space experiment
 - modularity allows for easy resizing of the detector design depending on the available mass&power

Additional details....

- Exercise made on the assumption that the detector's only weight is ~ 1600 kg
 - Mechanical support is not included in the weight estimation
- The optimal material is CsI(Tl)

Density:	4.51 g/cm ³
X _o :	1.85 cm
Moliere radius:	3.5 cm
λ_{I} :	37 cm
Light yield:	54.000 ph/MeV
$\tau_{ m decay}$:	1.3 µS
λ_{\max} :	560 nm

N×N×N	20×20×20				
L of small cube (cm)	3.6*				
Crystal volume (cm ³)	46.7				
Gap (cm)	0.3				
Mass (Kg)	1683				
N.Crystals	8000				
Size (cm ³)	78.0×78.0×78.0				
Depth (R.L.) " (I.L.)	39×39×39 1.8×1.8×1.8				
Planar GF (m ² sr) **	1.91				

(* one Moliere radius) (** GF for only one face)

• Simulation and prototype beam tests used to characterize the detector

Mechanical idea

The readout sensors and the front-end chip

- Minimum 2 Photo Diodes are necessary on each crystal to cover the whole huge dynamic range 1 MIP→10⁷ MIPS
 - Large Area Excelitas VTH2090 9.2 x 9.2 mm² for small signals
 - Small area 0.5 x 0.5 mm² for large signals
- Front-End electronics: a big challenge!
- The CASIS chip, developed in Italy by INFN-Trieste, is very well suited for this purpose
 - IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 5, OCTOBER 2010
- 16 channels CSA+CDS
- Automatic switching btw low and high gain mode
- 2.8 mW/channel
- 3.10³ e⁻ noise for 100 pF input capacitance
- 53 pC maximum input charge

MC simulations

. Fluka-based MC simulation

- Scintillating crystals
- Photodiodes
 - Energy deposits in the photodiodes due to ionization are taken into account
- Carbon fiber support structure (filling the 3mm gap)
- Isotropic generation on the top surface
 - Results are valid also for other sides
- . Simulated particles:
 - − Electrons: 100 GeV → 1 TeV
 - − Protons: 100 GeV \rightarrow 100 TeV
 - about $10^2 10^5$ events per energy value
- Geometry factor, light collection and quantum efficiency of PD are taken into account
- Requirements on shower containment (fiducial volume, length of reconstructed track, minimum energy deposit)
 - Nominal GF: $(0.78*0.78*\pi)*5*\epsilon$ m²sr= 9.55* ϵ m²sr

Electrons

Protons

Energy resolution (correction for leakage by looking at the shower starting point)

The prototypes and the test beams

- Two prototypes have been built at INFN Florence, with the help of INFN Trieste, INFN Pisa and University of Siena.
- A small, so called "pre-prototype", made of 4 layers with 3 crystals each
 - 12 CsI(Tl) crystals, 2.5x2.5x2.5 cm³
- A bigger, properly called "prototype", made of 14 layers with 9 crystals each
 - 126 CsI(Tl) crystals, 3.6x3.6x3.6 cm³
- Both devices have been tested at CERN SPS (pre-prototype in October 2012 and prototype in January-February 2013)

The prototype

14 Layers 9x9 crystals in each layer 126 Crystals in total 126 Photo Diodes 50.4 cm of CsI(Tl) $27 X_0$ 1.44 λ_I

A glance at prototype's TB data

SPS H8 Ion Beam: Z/A = 1/2, 12.8 GV/c and 30 GV/c

Please note: we can use the data from a precise silicon Z measuring system located in front of the prototype to have an exact identification of the nucleus

A glance at prototype's TB data

Total energy deposit VS shower-starting layer

Development of a 3-DA cubic crystal calorimeter for space

Average longitudinal profile (1.44 λ_I)

Energy deposit for various nuclei

Energy Deposit Vs Beam Energy (D,He,B,C,O,Mg,Si,S,Ti,Fe)

How to improve the calorimeter performances?

- We could try to see the Cherenkov light produced in the crystals by the electromagnetic component of the shower
 - 1. Improvement of the e/p rejection factor
 - 2. Improvement of the hadronic energy resolution (DREAM project)
- Possibility to use the timing information to discriminate btw scintillation (slow) and Cherenkov (fast) component
- Cherenkov light is a small fraction of the scintillaton light, compatible with the direct energy release in the PD....

Some ideas for the Cherenkov light

- Use of SiPM to detect Cherenkov light
 - Discrimination btw Fast Cherenkov light and Slow Scintillation light possible with dedicated fast sampling electronics
 - Use of SiPM highly sensitive in the UV region
- Use of 'UV transmitting' filters on the SiPM face
 - to block the largely dominant scintillation light
- Possible use of ≥3 SiPM for each crystal on orthogonal faces
 - to have a good uniformity in the response for particles hitting the different calorimeter's faces
- R&D is under way.... More news at the end of the year!

Conclusion

- An homogeneous, isotropic calorimeter looks to be an optimal tool for the direct detection of High Energy CR
- The status of the project is quite advanced:
 - Simulation
 - Prototypes
 - Test beams
- Next steps:
 - R&D on the Cherenkov light during 2013
 - Low energy electron test beam in INFN Frascati in autumn 2013 for Cherenkov light studies
 - Possibly enlarge the prototype's dimensions
 - R&D for the Calibration system of every crystal is certainly necessary to optimize the whole calorimeter's performances

BACKUP

What we can reach with this calorimeter?

Assumptions:

- 10 years exposure
- No direct closeby sources for electrons
- Polygonato model for protons/nuclei

		Electrons											
	$\mathrm{Gf}_{\mathrm{eff}}(\mathrm{m}^2\mathrm{sr})$		$\Delta E/E$	Depth (X	_o) e/p fac	rej. I ctor	E>0.5 Te	eV E>1	TeV	E>2 TeV	E>47	ГeV	
	3.4		2%	39	>1	L O ⁵	$\sim 2.10^{5}$	~4	.104	~6.10 ³	~7.1	$\sim 7.10^{2}$	
	~ knee												
	Protons and Helium												
Gf _{eff} n²sr)	ΔE/E	Depth	E>10	o TeV	TeV E>500 TeV		E>1000 TeV E>2		E>200	2000 TeV E>4000 Te		oo TeV	
	:)	(λ^{I})	р	Не	р	He	р	Не	р	Не	р	He	
~4	40%	1.8	2.8 x10 ⁴	2.7 x10 ⁴	1.7X10 ³	1.8x10 ³	4.4X10 ²	5.5X10 ²	1.0X10 ²	1.6x10 ²	1.7×10^{1}	3.6x1	

Development of a 3-DA cubic crystal calorimeter for space

Shower starting point resolution

Protons

Energy estimation

Red points: profile histogram Fitted with logarithmic function

Proton rejection factor

Montecarlo study of proton contamination using <u>CALORIMETER INFORMATIONS ONLY</u>

- PARTICLES propagation & detector response simulated with FLUKA
- **Geometrical cuts for shower containment**
- **Cuts based on longitudinal and lateral development**

- □ 155.000 protons simulated at 1 tev : only 1 survive the cuts
 - The corresponding electron efficiency is 37% and almost constant with energy above 500gev
- Mc study of energy dependence of selection efficiency and calo energy distribution of misreconstructed events

Proton rejection factor

Contamination : 0,5% at 1TeV 2% at 4 TeV

An upper limit 90% CL is obtained using a factor X 3,89

Protons in acceptance/dE/Protons detected as electrons/dEcal (E=Ecal) = 1/6,4 107-6 \cdot 0,3 = 0,5 x 10⁶ Protons in acceptance/dE/Protons detected as electrons/dEcal (E=Ecal) X Electron Eff. ~ 2 x 10⁵

Noise

CN evaluated **without** disconnected channels

Signal in the central cube in High Gain (Blu) and Low Gain (Red)

Response uniformity of the crystals

Pre-prototype test

Muon beam

Matching region btw high and low gain

Energy resolution (very rough)

Expected resolution from simulation

Particle hitting the center of the crystals

Dual-readout calorimetry with a full-size BGO electromagnetic section

N. Akchurin^a, F. Bedeschi^b, A. Cardini^c, R. Carosi^b, G. Ciapetti^d, R. Ferrari^e, S. Franchino^f, M. Fraternali^f, G. Gaudio^e, J. Hauptman^g, M. Incagli^b, F. Lacava^d, L. La Rotonda^h, T. Libeiro^a, M. Livan^f, E. Meoni^h, D. Pinci^d, A. Policicchio^{h,1}, S. Popescu^a, F. Scuri^b, A. Sill^a, W. Vandelliⁱ, T. Venturelli^h, C. Voena^d, I. Volobouev^a, R. Wigmans D^{*}ual readout -> BGO: scintillation + Cherenkov

Fig. 14. Light transmission as a function of wavelength for the two filters used to read out the BGO crystal. The light emission spectrum of the crystal, the spectrum of the Cherenkov light generated in it and the quantum efficiency of the PMTs used to detect this light are shown as well. The vertical scale is absolute for the transmission coefficients and the quantum efficiency, and constitutes arbitrary units for the light spectra.

Fig. 5. The time structure of a typical shower signal measured in the BGO em calorimeter equipped with a UV filter. These signals were measured with a sampling oscilloscope, which took a sample every 0.8 ns. The UV BGO signals were used to measure the relative contributions of scintillation light (gate 2) and Cherenkov light (gate 1).