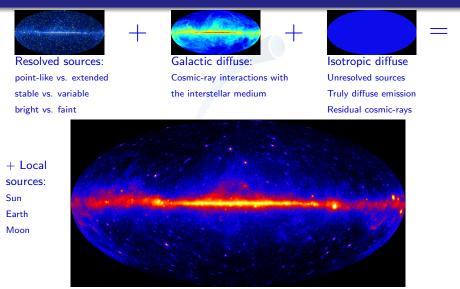

The Calorimeter of the Fermi Large Area Telescope

> Carmelo Sgrò INFN-Pisa carmelo.sgro@pi.infn.it

on behalf of the Fermi LAT collaboration

April 25, 2013 - CHEF 2013

THE FERMI OBSERVATORY

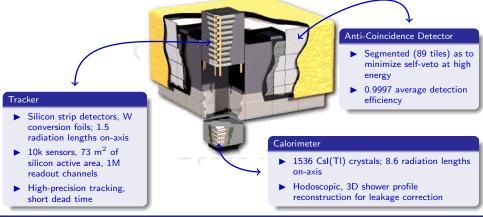

- Launched by NASA on 2008 June 11
- ► Almost circular orbit, at 565 km altitude and 25.6° inclination

Large Area Telescope (LAT)

- Pair conversion telescope
- ► Energy range: 20 MeV >300 GeV
- Field of view: ~ 2.4 sr (at 1 GeV)
- Effective area: $\sim 8000 \text{ cm}^2$ on axis (at > 1 GeV)

FERMI SCIENCE TARGET The γ -ray sky above ~ 20 MeV

+ New Physics (DM search)


Science Requirements and Constraints A short summary

- Fermi sources generally have a $E^{\sim -2}$ power-law spectrum
 - Need of a moderate energy resolution
 - Energy over-estimation is dangerous
 - Need large collecting area for high energy
- ▶ We want to be able to measure precisely spectral features (cutoff, lines)
- We want a broad energy range
 - Very hard to have a uniform detector response in the whole energy range
- We want to study source variability
 - Need relatively "fast" detectors
 - Also important to reduce pile-up effects
 - Need large field-of-view
- Operation in orbit imposes very stringent limits on:
 - Lateral size
 - Launcher dimensions: $\sim 1.8 \times 1.8 \ {\rm m^2}$ for the LAT
 - Mass budget:
 - Calorimeter depth (once the footprint is fixed)
 - $\blacktriangleright~$ 3000 kg for Fermi, ~ 1400 kg for the CAL
 - Power budget:
 - ▶ $650~{\rm W}$ for the LAT, $\sim 60~{\rm W}$ for the CAL

THE LARGE AREA TELESCOPE Atwood, W. B. et al. 2009, ApJ, 697, 1071

Large Area telescope

- Overall modular design
- ▶ 4 × 4 array of identical towers (each one including a tracker and a calorimeter module)
- Tracker surrounded by an Anti-Coincidence Detector (ACD)

Carmelo Sgrò (INFN-Pisa)

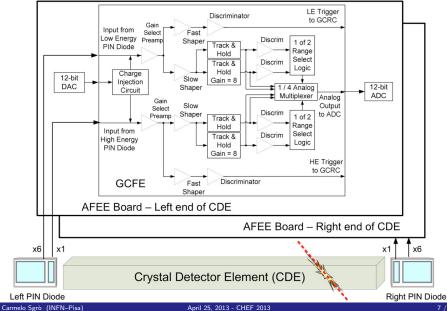
CALORIMETER MODULE OVERVIEW GROVE, J. E. AND JOHNSON, W. N. 2010, PROC. OF SPIE, 7732, 77320J

Imaging Calorimeter

- Energy-profile fitting improves energy resolution
- Shower shape helps background rejection
- CAL-only events (direction reconstruction)

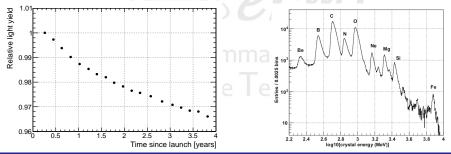
Mechanics

- Carbon composite cell structure
 - Al base plate and side cell closeouts


Detector Element

- ▶ 8 layers of 12 Csl(Tl) crystals
- ► Crystal dimensions 27 × 20 × 326 mm
 - Moliere radius is 38 mm
 - Radiation length is 19 mm
- Alternating orthogonal layers
- Dual PIN photodiode on each end of crystals
 - 3D position

Electronics


- Electronics boards attached to each side
- Minimize space, passive/empty volumes
- Low power per channel ASICs
- Large dynamic range (2 MeV 70 GeV) is demanding

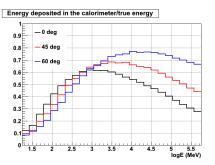
CAL CRYSTAL READOUT

ON-ORBIT PERFORMANCE AND CALIBRATION

- ► The calorimeter is alive and all channels are working as expected
 - Except 3 noisy channels out of 6144 (no impact on science performance)
- ▶ Periodic triggers (at 2 Hz) for pedestal monitoring
- Charge injection to correct for the electronics non-linearities
- Non-interacting protons for low energy calibration
- Protons and heavy nuclei for inter-range calibration
- Non-interacting heavy nuclei for light asymmetry (using tracker information)
- \blacktriangleright Crystal light yield attenuation due to radiation damage ($\sim -1\%/{\rm year}$ as expected)

Carmelo Sgrò (INFN-Pisa)

CALORIMETER DIRECTION RECONSTRUCTION


- The calorimeter direction is determined through a three-dimensional moments analysis:
 - Principal axes of the energy deposit determined by diagonalizing the corresponding inertia tensor
 - Iterative process in which the calorimeter hits far from the axis are progressively discarded
- Calorimeter axis can be used in
 - event reconstruction, to seed the track finding CODE
 - event selection, via CAL-Track matching
 - event direction, for events without good tracks

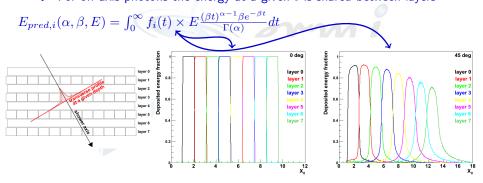
Very large phase space: from ~ 20 MeV to > 300 GeV; up to $\sim 70^\circ$ wrt to vertical axis

- $\blacktriangleright \ {\rm E}{<}{\sim} 1 \ {\rm GeV}$
 - ► A large fraction of the energy is deposited in the tracker (1.4 X₀)
 - We use both the calorimeter and tracker information (nb of hits)

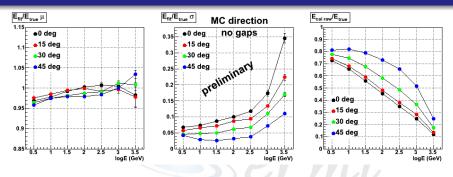
▶ E>~1 GeV

- The energy loss in the tracker becomes smaller than the leakage behind the calorimeter
- At large E, the leakage becomes very important

The gamma-ray energy is reconstructed via two different algorithms


- a) A parametric correction
 - Use energy centroid depth along the showed axis
 - Corrects for energy losses
 - Best at low energy

b) A shower profile fit


- Uses a shower axis as reference
- Full 3D fit of energy deposition
- Best at high energy

SHOWER PROFILE FIT Ph. Bruel 2012 J. Phys.: Conf. Ser. 404 012033

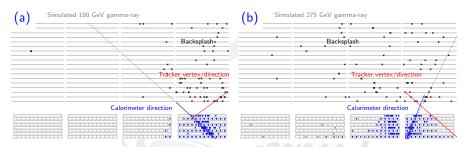
- ► The principle: fit the energy deposit in each layer ► $g(\alpha, \beta, E)$ is to constrain the α and β to be close to their average $\chi^2(\alpha, \beta, E) = \sum_{i=0}^{8} \frac{(E_{meas,i} - E_{pred,i}(\alpha, \beta, E))^2}{\delta E^2} + g(\alpha, \beta, E)$
- Need a precise modeling of the shower development through the CAL layers
 f_i(t) is the fraction of energy deposited in layer i
 For off-axis photons the energy at a given t is shared between layers

SHOWER PROFILE PERFORMANCE Ph. Bruel 2012 J. Phys.: Conf. Ser. 404 012033

- An improved version of the algorithm is under development
- \blacktriangleright Good energy resolution up to $\sim 1~{\rm TeV}$
- Above 1 TeV, the energy resolution is degraded, because of crystal saturation and poor containment
- The energy measurement depends on the precision of the direction given by the tracker, but bad events can be rejected by using the χ² of the fit
- No large over-estimation of the energy

NEW RECONSTRUCTION (PASS8): CAL CLUSTERING

(a)				(b)			
*	Overlaid p	ile-up activity		*	***		
Simulated 1.6 G	eV gamma-ray	* * * * *			*	* * * *	
``	Calorimeter	*		<u>}</u>	imeter cluster #1 na probability: 0.98	· \	Calorimeter cluster # MIP probability: 0.92
	Caloriu	meter axis	•				


(a) In the current framework all hits in CAL are considered part of a single shower

- Background rejection suffers instrumental pile-up
- Small efficiency loss (accounted for in the Instrument Response Functions)

(b) We added clustering stage at the beginning of the reconstruction chain

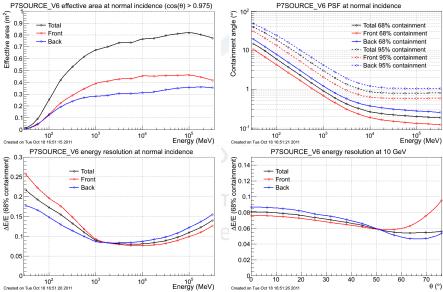
- Separate the pile-up activity from the genuine gamma-ray signal
- Provide topology information to the following reconstruction steps

NEW RECONSTRUCTION (PASS8): CAL-ONLY EVENTS

Events with no usable tracker direction information:

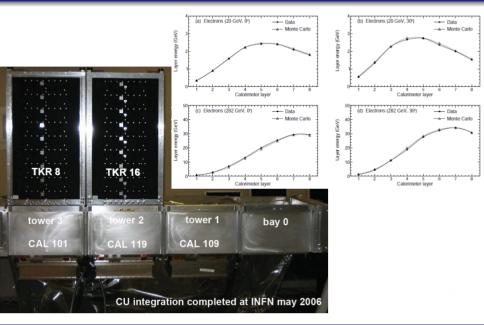
- (a) a γ -ray converting in the calorimeter and
- (b) a γ -ray converting in the tracker being mistracked due to the backsplash
- Currently removed from the photon sample
- Dedicated analysis to recover these events
 - Increase aeff at high energy
 - Background rejection is more difficult
 - Need to evaluate real performance

SUMMARY

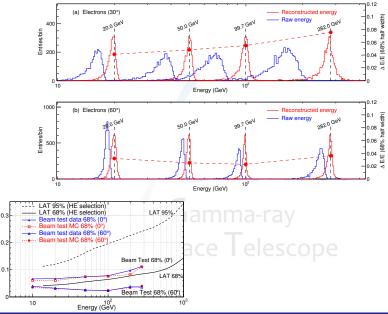

- ► The Fermi Large Area Telescope has proven to be an excellent telescope for gamma rays above ~20 MeV
- The LAT calorimeter works as designed. Thanks to its hodoscopic segmentation it provides :
 - ▶ Good energy resolution up to 300 GeV, still acceptable at 1 TeV and beyond, despite its modest 8.6X₀ depth
 - Good background rejection capabilities
 - Good direction measurement ($\sim 2^{\circ}$ above 20 GeV)
- Current re-writing of the reconstruction software (Pass8) to improve the instrument performance, taking into account the real data experience, including the extension of the energy reach up to 3 TeV
- Looking forward: Fermi continues to survey the sky! NASA Senior Review recommended extending operations through 2016, at least
- Remember, Fermi data are publicly available
 - Get data and analysis software at Fermi Science Support Center
 - http://fermi.gsfc.nasa.gov/ssc/

EXTRA

Gamma-ray Space Telescope

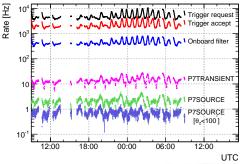

INSTRUMENT RESPONSE FUNCTION

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

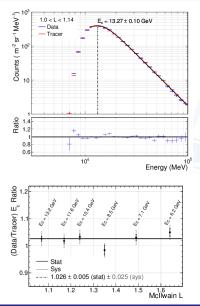

Carmelo Sgrò (INFN-Pisa)

BEAM TEST RESULTS

Carmelo Sgrò (INFN-Pisa)

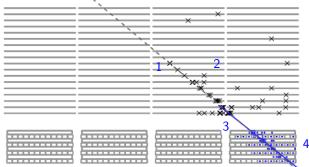

BEAM TEST RESULT II

Carmelo Sgrò (INFN-Pisa)


Energy resolution (half width)

TRIGGER

- Triggering on (almost) all the charged particle that crosses the LAT (~2 kHz)
- ▶ Programmable on-board filter to fit the data volume into the allocated bandwidth (~1.5 Mb/s average).
- Most of the ~400 Hz of events passing the gamma filter and downlinked to ground are actually charged-particle background
- All subsystems contribute to the L1 hardware trigger:
 - TKR: three consecutive TKR x-y planes hit in a row
 - CAL LO: single CAL log with more than 100 MeV (adjustable)
 - CAL HI: single CAL log with more than 1 GeV (adjustable)
 - ROI: MIP signal in the ACD tiles close to the triggering TKR tower
 - CNO: signal in one of the ACD tiles compatible with a heavy


IN-FLIGHT ENERGY SCALE CALIBRATION EXPLOITING THE $e^- + e^+$ geomagnetic rigidity cutoff

- The value for the cutoff rigidity can be predicted using a particle tracing code
 - Using code written by Smart & Shea (Final Report, Grant NAG5-8009, 2000)
 - Cross checks on the fidelity of the geomagnetic field model have been performed using rigidity measurements from other satellites such as SAMPEX and HEAO-3
- Comparison of predicted and measured values provides an opportunity to perform an in-fight verification
- By using different McIlwain L intervals we obtain several calibration points from 6 to 13 GeV
 - The energy scale is known within 5% (in this energy range)

Details in: Astropart. Phys., 35, 346 (2012)

The technique: pair production

- Standard technique for high-energy γ -ray astrophysics
 - Dominant interaction mechanism for $E > \sim 20 MeV$
 - Used by past experiment like COS-B and EGRET
- Here an example of a nearly ideal γ -ray candidate:
 - 1. γ -ray converts in the middle of TKR = = = \leq \leq
 - 2. 1 or more tracks found (with a few extra hits near the track)
 - 3. CAL axis aligned with track
 - 4. CAL energy confined near axis