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W boson mass

M W=√ πα
√2GF

1
sin θW √1−Δ r

Today's measurements are precise enough to test the electroweak theory at the loop level.
At higher orders (including loop diagrams), the mass of the W boson can be expressed as:
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Current state of the art
For equal contribution to the 
Higgs mass uncertainty need: 
 

    ∆m
W

 ≈ 0.006 ∆m
t
 .

Current (2013) Tevatron average:
    ∆m

t  
= 0.87 GeV    

  ⇒ would need:        ∆m
W
 =    5 MeV

  ⇒ we have:            ∆m
W
 = 15 MeV

Before Run II had:   ∆m
W

 = 30 MeV

At this point, i.e. after all the precise 
top mass measurements from the 
Tevatron, the limiting factor 
here is ∆m

W 
, not ∆m

t
 .

In the context of the Standard Model (SM), 
the mass of the new boson discovered 
at CERN is inside this blue band.
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W mass: measurement method

In a nutshell: measure two objects in the detector:

   - Lepton (in our case an electron),
     need energy measurement with 0.1 per-mil precision (!!)

   - Hadronic recoil, need ~1 % precision

Z → e e events provide 
critical control sample

W → e ν signal
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Top mass: lepton + jets channel
The most precise measurements of the top quark mass
use the “lepton + jets” channel.

One isolated high-p
T
 lepton 

(in practice: electron or muon)

Missing transverse energy

several jets of 
different flavours

Exploit “W mass constraint” to calibrate the
(light-)jet energy scale in situ, i.e. in the t t events themselves.

In practice: correction on top of the nominal jet energy 
scale corrections.
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The upgraded DØ detector
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Overview of the calorimeter
End Calorimeter (EC)

Central 
Calorimeter (CC)

Coarse hadronic 
(CH) Fine hadronic (FH)

Electromagnetic (EM)
46000 cells            

50 dead channels

 Liquid argon active medium and (mostly) uranium absorber

 Hermetic with full coverage :  |η| < 4 

 Segmentation (towers): Δη x Δϕ = 0.1x0.1

     (0.05x0.05 in third EM layer, near shower maximum)



Jan Stark CHEF - Lessons from the Tevatron, Paris, 22-25 April 2013 8

Gain calibration: strategy

Factorise into two parts:

    - calibration of the calorimeter electronics,

    - calibration of the device itself.

Electronics calibrated using pulsers.

Calibration of the device itself:

    Determine energy scale (i.e. multiplicative correction factor), ideally per cell.

    Use phi intercalibration to “beat down the number of degrees of freedom” as much
    as possible.

    Use Z → e+ e- to get access to the remaining degrees of freedom, as well as the
    absolute scale.
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Phi intercalibration
Qiang Zhu, “Measurement of the W boson mass in pp collisions at sqrt(s) = 1.8 TeV”,
PhD thesis, April 1994, available from the D0 web server, and references therein.

pp beams in the Tevatron are not polarised.

           → Energy flow in the direction transverse to the beams should not have any azimuthal dependence.
        Any Φ dependence must be the result of instrumental effects.

Energy flow method:

Consider a given η bin of the calorimeter. Measure the density of calorimeter objects above a 
 given ET threshold as a function of Φ. With a perfect detector, this density would be flat in Φ.

  Assuming that any Φ-non-uniformities are due to energy scale variations, the uniformity
of the detector can be improved by applying multiplicative calibration factors to the energies

 of calorimeter objects in each Φ region in such a way that the candidate density becomes flat in Φ
 (“Φ intercalibration”).

Dedicated trigger (Run II):
Level 1: 
  one trigger tower with total (EM+HAD) E

T
 > 5 GeV

Level 2: 
  require 6 GeV 
  in EM section

Level 2: 
  require 5 GeV 
  in HAD section

Level 3: 
  precision tower 
  with EM E

T
 > 8 GeV

  matched to above

Level 3: 
  precision tower 
  with HAD E

T
 > 7 GeV

  matched to above
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Phi intercalibration

A typical Tevatron “fill” as seen by the
DØ Trigger/DAQ system.

Black curve: L1 accept rate.
We observe:

   - effect of prescale changes,

   - lots of unused bandwidth during
     second half of the store.

Another Tevatron “fill” where data taking
for phi intercalibration is activated.

Can easily write to tape 0.5M – 1M
events for phi intercalibration per “fill”.

This allowed us to repeat the complete
phi intercalibration of the calorimeter
in a few weeks whenever it was necessary.
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Gain calibration: results and impact

Example of results:

intercalibration constants 
in first layer of CC-EM.

Same Z → e e before 
and after calibration.

See improvement 
in mass resolution !
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η-dependent absolute EM energy scale

After phi intercalibration, need
to determine the absolute
energy scale, separately
for each phi ring (at fixed eta).

In EM calorimeter, this is
done using Z → e+ e- events
and the known mass (LEP).

In HAD calorimeter, this is
done using di-jet balance and
the requirement that the
width of the imbalance distribution
be minimal.

Plot: examples of multiplicative calibration constants, separately for
each phi ring (at constant eta) in the EM calorimeter.

The two series of points represent two separate data taking periods
(a few 100 pb-1 per period).
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Origin of large mis-calibrations
Unit cell of the calorimeter readout:

U
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n
iu

m

U
ra

n
iu

m

Signal board
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Origin of large “outliers”
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Electrons and photons: cone algorithm

For example in the 
W mass measurement,
we use loose requirements:

   fraction of core energy
   in the EM layers > 90 %

   calorimetric isolation:

To define the electron four-vector:

   - direction from track
     associated to cluster

   - energy from “cone core energy”
     plus correction for energy
     lost in the uninstrumented
     material in front of the
     calorimeter (from precise
     first-principles simulations)

0.15
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Electrons and photons:
track match and “track veto”

In electron reconstruction/identification, 
typically require a reconstructed track 
matched in η/ϕ to the electron cluster.

   - Residual misalignments between tracking
     and calorimetry are studied in detail and
     corrected using a clean sample of electrons
     from Z → e+ e-.

   - A variant of the matching algorithm
     also uses E/p.

For photon reconstruction, typically veto on track match.

Alternative approach: “Hits on Road”
is less sensitive to track reconstruction inefficiencies
at high instantaneous luminosities.

In a nutshell: “count hits in the tracking devices
inside 'roads' that represent the expected path
for an electron or a positron”.

Hits on Road:
calorimeter cluster

layers of tracking and 
preshower detectors

“roads” expected for
electron and positron
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Electrons and photons: jet rejection
Heavily rely on robust variable for electron/photon identification: “HMatrix”

In a nutshell: a simple 2 that quantifies how electron/photon-like a given cluster is.

The following observables are input to this 2:

   - Fractional energy deposits in the four readout layers of EM calorimeter.

   - Width in r *  of the cluster.

   - The dependence of these observables on electron/photon energy and η is taken into account.

Also have more powerful (and more complex) tools for electron/photon identification that include a much larger number of 
discriminating variables. 
E.g. artificial neutral network (ANN) that is trained to discriminate photons against jets. 
Two of the extra variables in this ANN are shown below.

Z → ee data

jet-enriched 
data sample

Z → ee simulation
for different
instantaneous 
luminosities
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New readout electronics

Preamp/
Driver

Trig. sum

Filter/
Shaper

x1

x8

SCA (48 deep)

SCA (48 deep)

SCA (48 deep)

SCA (48 deep)

BLS
Output
Buffer

Bank 0

Bank 1

L2
SCACalorimeter

• Detector signal ~ 450 ns long
      (bunch crossing time: 396 ns)

• Charge preamplifiers

• BLS (baseline subtraction) boards
     • short shaping of ~2/3 of integrated signal
     • signal sampled and stored every 132 ns in 
       analog buffers (SCA) waiting for L1 trigger

     • samples retrieved on L1 accept, 
        then baseline subtraction to remove pile-up 
        and low frequency noise

     • signal retrieved after L2 accept

• Digitisation

two gains for 
better dynamic range

Have ability to sample and 
record the shaped signal 
also at (320 ± 120) ns 
to make sure we are on the peak.
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Zero suppression
Typical noise levels (from electronics, uranium decay) per readout cell, as measured from
“pedestal runs” (read out detector in the absence of beam):

           Layer           σ [ADC counts]     σ [MeV]

           CC-EM1 3.1   48
           EC-EM1 3.2   50
           CC-EM3 2.0   25
           CC-FH1 6.6   80
           CC-CH 6.4 297

In the offline reconstruction software, we run (before object reconstruction), the “T42.5 algorithm”:

    Cells with energy below 2.5σ are discarded.

    An isolated cell is considered “noise” and thus discarded if it is not “signal-like” and if it has no
    “signal-like” 3D neighbour, or if it has a negative energy. A cell is considered “signal-like” if its 
    energy is above a relatively high threshold: 4σ .

This tight zero-suppression does have a non-trivial impact on, e.g., 
low-energy cells in the periphery of electron clusters and on soft hadronic activity (low-E

T
 jets).

To properly model this effect in detailed simulations, need 
   - accurate modelling of the showers electrons, low-E

T
 jets,

   - accurate modelling of energy from additional pp interactions (“pile-up”).



Jan Stark CHEF - Lessons from the Tevatron, Paris, 22-25 April 2013 20

“Pile-up” and “ZB overlay”
Beate Heinemann, 2006

The instantaneous luminosity at the Tevatron
is significantly lower than at the LHC.
But keep in mind that it is achieved with much
larger bunch spacing (i.e. “few bunches filled with 
a lot of [anti-]protons each).

→ pile-up (both in-time and out-of-time)
     is also a non-negligible effect at the Tevatron.

The following technique used to model pile-up (both in-time and out-of-time) in detailed simulations has turned out
to be invaluable: “Zero-bias overlay”

In a nutshell: 

       - do not simulate additional pp interactions from first principles

       - instead: routinely collect “ZB events” (triggers on random bunch crossings)  during collider operations.
                       For these triggers, the online calorimeter zero suppression is turned off, i.e. all cells are read.

       - … and “overlay” one of these data events on each simulated event (hard scatter) !
          (for calorimeter, “overlay” means add (cell-by-cell) energies from the ZB event and the simulated event)

Very powerful to describe contribution from pile-up to electron cone energy, effect of zero-suppression in the presence
of pile-up, … will discuss the example of soft hadronic activity later in this talk.

during second half of Run II, 
typically reached luminosities twice as large

the LHC distributions assume
nominal bunch spacing (25 ns)
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Keep in mind: the CAL is not alone !

Interaction
point

First active layer of
liquid argon

about
3.7 X

0
 in 

between !

0.9 X
0

0.3 X
0 
plus 1 X

0
 of lead

cryo walls: 1.1 X
0

inner detector: 0.1 X
0
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Impact of uninstrumented material

Two different subsets
of CC-CC sample:

 - both electrons at
    ~ normal incidence
    on dead material

 - both electrons at
    very non-normal
    angle of incidence

Observations: - The width of the two peaks is very different.

- The peak positions are not in the same place.
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How we sample showers in Run II
Average shower profile of an 45 GeV electron.

The positions of the readout sections of the D0 central calorimeter are indicated, 
for two different angles of incidence.

η
phys

 = 0 η
phys

 = 1
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Shower fluctuations !
On the previous slide, we have discussed the average shower profile.

To illustrate the importance of fluctuations, we now show ten showers, 
generated using the GFlash parameterisation.

The fraction of energy lost in the dead region fluctuates from one shower to another.

Fluctuations are larger at low electron energy than at high energy.

Fluctuations are larger at non-normal incidence than at normal incidence.

E = 5 GeV         η
phys

 = 0 E = 45 GeV         η
phys

 = 0
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Consequences

Need precise first-principles simulations to determine the energy correction factors
and a model of the sampling fluctuations.

Correction factor:

     reconstructed cluster energy
           → electron energy

Fractional energy resolution 
as a function of angle of incidence
(electrons with E = 45 GeV)



Jan Stark CHEF - Lessons from the Tevatron, Paris, 22-25 April 2013 26

Geant 3

Simulated tracks of 400 keV electrons in uranium.

different 
scale !

Bremsstrahlung cross-section for electrons in uranium:

Identified various issues in Geant and the
in the interface between D0 software and Geant.

Key tool: 
comparisons between Geant 3 and EGS 4
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Material tune

EM1

EM3

EM2

EM4

EM1

EM3

EM2

EM4

After adjustmentBefore adjustment of material model

Conclusion: need to add (0.1633 ± 0.0095) X
0
 of dead material on top of the “first-principles accounting”

in the detailed simulation of the DØ detector.
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Jet reconstruction
Infrared instability:
soft parton emission changes jet clustering

For more information: G. C. Blazey et al., arXiv:hep-ex/0005012 (2000).

Midpoint cone-based algorithm:

 - Cluster objects based on their proximity in /ϕ space.

 - Fixed cone size (radius=0.5 for most analyses
   except QCD precision measurements).

 - Starting from seeds (calorimeter towers above threshold), 
   find stable cones (kinematic centroid = geometric centre).

 - Seeds necessary for speed, but they are a source
   of infrared instability.

 - To avoid infrared instability, 
   we use the “midpoint algorithm”, i.e. look for stable cones
   from middle points between two adjacent cones.

 - Stable cones sometimes overlap
      → merge cones if p

T
 overlap > 75 %

More advanced algorithms are available in our reconstruction software. But this simple algorithm works very well
for the majority of measurements.
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Jet energy scale
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“Soft hadronic recoil” 
in vector boson events

When studying the soft hadronic system
that recoils against Z or W events
(essential for measurement of W mass),
jet clustering is inappropriate
(“the recoil is too soft for this in most events”).

Instead, a very inclusive definition of the
hadronic recoil vector is used:

  

where the sum includes all calorimeter cells
that are not part of the electron cluster(s).

      is a 2D vector defined in the transverse plane.

Missing E
T
 is the negative sum of the electron momentum vectors (in the transverse plane) and      .

The transverse mass is defined as:

Transverse momentum of Z bosons produced 
at the Tevatron

u⃗T=∑i
E i×sin θi×(cosϕi

sin ϕi )

u⃗T

u⃗T
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“Soft hadronic recoil”: 
impact of zero suppression and pileup

Transverse momentum of vector boson (Z ) [GeV]F
ra

ct
io

n
a

l e
n

e
rg

y 
re

sp
o

ns
e

 f
or

 h
a

d
ro

n
ic

 r
ec

o
il

simulation without “ZB overlay”

simulation including “ZB overlay”

Pile-up has, of course, a big impact in the reconstruction of the      vector: pile-up adds a lot of extra energy to the event,
and the net contribution to      is not always small compared to the contribution from the hadrons recoiling against
the vector boson.

But, due to the tight zero suppression, pile-up even changes the way in which the calorimeter detects the
contribution from the hadrons recoiling against the vector boson: the difference between the two simulations
below is due to the fact that the presence of extra energy from pile-up “pushes more cells above the zero-suppression
threshold”, thus making it easier to detect the soft contributions from the hadronic recoil.

u⃗T
u⃗T
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Z data

Good agreement between data and parameterised Monte Carlo.

m(ee)

m(Z) = 91.193 ± 0.017 (stat) GeV

4.3 fb-1

54.5k events

GeV

C = (2.00 ± 0.07) %
Run design goal: 2 % MET

GeV
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W data

Fit results:

   m(W) =    m(W) =  
       80371 ± 13 MeV (stat)       80343 ± 14 MeV (stat)

m
T

p
T
(e)

D0, 4.3 fb-1 D0, 4.3 fb-1

1.68M events
central electrons  (|η|<1.05)
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m(W): results and projections (DØ)

combination: 23
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m(top): results

Phys. Rev. D84, 032004 (2011)
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Results !
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Conclusions
Simple object reconstruction techniques work very well (cone algorithms, track match, ….).

Major efforts went into energy calibrations:

   - gain calibration, separately for each cell

   - object-level calibrations:

        - electron/photon energy scale,   jet energy scale

        - powerful combination of measurements based on data control samples 
          and of corrections from first-principles simulation. 

Detailed simulations are a major ingredient for precision measurements:

   - detailed simulation of EM showers,

   - precise tuning of material model,

   - “ZB overlay” to model the effect of “pile-up”,

   - ….

This detailed work on calorimetry is a cornerstone of the success of the rich physics programme at DØ. 
In this talk, insisted on only two measurements:

     - Together with our friends across the ring,
         we have measured the top quark mass to better than 1 GeV,
         we have reduced the uncertainty in the W boson mass from 33 MeV (LEP) to 15 MeV.

     - These measurements became available just at the right time, because it is a key ingredient that is
        needed to check if the new boson discovered at CERN has the properties of the standard model 
        Higgs boson.

But these are just two examples of the wealth of relevant physics results from the Tevatron.
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Backup Slides
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Fermilab

Tevatron collider at Fermilab near Chicago:
proton-antiproton collisions at 2 TeV.
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Data taking periods

year

in
te

gr
at

e
d 

lu
m
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ity
 (

pb
-1
)

Integrated luminosity per fiscal year

Run 0 
(CDF only) Run I (0.1 fb-1)

Run II (10 fb-1)

1995:
discovery of 
the top quark



Jan Stark CHEF - Lessons from the Tevatron, Paris, 22-25 April 2013 41

Segmentation of the calorimeter
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Unit cell of the calorimeter readout
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Electronics calibration
Aim: correct for channel-by-channel differences in electronics response.

Principle: 
inject known signal into 
preamplifier and see what 
the electronics measures.

Do this separately for 
gains x8 and x1, possibly 
also separately for the 
two L1 SCAs per channel.

DAC (pulser signal)

A
D

C
 (

re
ad

ou
t)

Major improvements to electronics calibration in d0reco p17:

  - use database for up-to-date calibration constants (pedestals, gains, non-linearities)

  - smarter pulser patterns, improved parameterisation of measured response

  - improved timing corrections

  - improved corrections for pulser/physics response differences
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Phi intercalibration
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Eta equalisation and absolute scale
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Eta-dependent absolute scale
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Finite integration time
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Calorimeter: stability of effective HV
Unit cell of the calorimeter readout:

One caveat:

The resistive coat has very high surface
resistivity:

   ~ 200 MΩ/

Any significant current will lead to a
voltage drop across the resistive coat

   => reduced electric field

   => reduced drift velocity

   => (slightly) reduced energy response

Liquid Argon calorimeter:

 - no intrinsic amplification

 - very stable device

       - argon is pure

       - geometry is stable

       - readout electronics
         is monitored regularly
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Calorimeter: currents

Zoom

In a nutshell:
a change of 170E30 in inst. luminosity 
corresponds to a change of ~12 A
and a change of 1.3 % in energy response
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Final electron energy scale calibration
AFTER calorimeter calibration, simulation of effect of inst. luminosity, corrections for dead material, 
modeling of underlying energy flow: 

final electron energy response calibration, using Z → e e, the known Z mass value from LEP 
and the standard “f

z
 method”:

E
measured

 = scale * (E
true

 – 43 GeV) + offset + 43 GeV

Use energy spread of electrons in Z decay (e.g. due to Z boost) to constrain scale and offset . 

In a nutshell: the f
Z
 observable allows you to split 

your sample of electrons from Z → e e into 
subsamples of different true energy; 
this way you can “scan” the electron energy 
response as a function of energy.

In Run IIb we do this separately for four bins
of instantaneous luminosity (plot on the right).

We are effectively
measuring m

W
/m

Z
.
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Soft electrons close to jets:
“road method”

Basic idea:

Example of a “road”
in the central calorimeter:
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Soft electrons close to jets:
“road method”
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Recoil model

Have five tunable parameters 
in the recoil model that allow us to adjust 
the response to the hard recoil as well as 
the resolution (separately for hard and 
soft components).
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Recoil calibration
Final adjustment of free parameters in the recoil model is done in situ using 
balancing in Z  e e events and the standard UA2 observables.
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Electrons from Z → e e and W → e ν

At a given physics eta, the spread in energy of electrons from Z → e e is small.
Also, the overlap with the energy spectrum of electrons from W → e ν is limited.

NB: overlap can be increased by including Z events in the CC-EC configuration 
       (at the cost of understanding the EC).

Black:  W → e ν

Red:    Z → e e

energy (GeV)physics eta

e
ne

rg
y 

(G
e

V
)
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Run IIb-specific challenges

Does have quite an impact on the observables
of interest (as shown on the right).

MET

m
T

Higher lumi, hence “way more activity in 
the detector”:

This is why we had to do significant 
additional R&D (w.r.t. to Run IIa analysis).
No additional R&D is expected for the 
final 5 fb-1 (similar lumi spectrum as
in current analysis).

GeV

GeV
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Electron efficiency model
Detailed model of electron reconstruction/identification efficiency in the busy Run IIb environment:
     - dependence on electron kinematics (p

T
, rapidity)

     - effect of the hard recoil
     - effect of pileup

Two critical control samples:
     - W and Z events from detailed simulation, with “overlay” of collider data 
          (trigger on random bunch crossing)
     - Z → e e (can be selected with minimal electron requirements)
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Recoil model
Have five tunable parameters in the recoil model that allow us to adjust the 
response to the hard recoil as well as the resolution (separately for hard and soft components):

model of pileup/noise
(from collider data, random trigger)

model of spectator partons
(based on soft collisions
in collider data)

model of hard recoil response
(from detailed first-principles simulation)
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Combination of the three observables
We take the results from the three observables (with their correlations) and combine them:

The combined result is:

We further combine with our earlier Run II result (1 fb-1) to obtain the new D0 Run II result:

When considering only the uncertainties which are allowed to decrease in the combination (i.e. not QED and PDF),
we find that the MET measurement has negligible weight. We therefore only retain p

T

e and m
T
 for the combination.

The probability to observe a larger spread between the three measurements than in the data is 5 %.

m
T
: 80.371 0.013 (stat)  0.022 (syst)

p
T

e: 80.343 0.014 (stat)  0.024 (syst)

MET: 80.355 0.015 (stat)  0.029 (syst)
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Comparison with previous results;
New averages

arXiv:1204.0042 [hep-ex]

DØ Run II combination:
80375 ± 23 MeV
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PDF uncertainties
In principle:

transverse observables (e.g. m
T
) are insensitive to the uncertainties in the (longitudinal) parton distribution functions (PDFs) 

In practice: 

the uncertainties are to some extent reintroduced via the limited η coverage of experiments, 
which are not invariant under longitudinal boosts

How to reduce the impact of the PDF uncertainties in measurements of the W boson mass ?

   - Reduce the uncertainties in the PDFs

         e.g. via measurements of the W charge asymmetry 
         at the Tevatron and the LHC (complementarity of the two colliders)

   - Reduce the impact of the PDF uncertainties on W boson mass

         by extending the η coverage as much as possible 
         (challenging: understanding lepton energy scale and pile-up and 
          backgrounds in the forward detectors)

   - Possibly reduce the impact of the PDF uncertainties on W boson mass

         by exploring even more robust observables 
         (“single out events with small longitudinal momentum”) to replace/complement m

T

These three approaches are not mutually exclusive, i.e. they can be pursued at the same time and gains should “add up”.

m
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Future PDF sets
Our theory friends are also active on improvements to PDF sets.

An example:

The PDF set “CT10W” is an important step towards including new results
on W (lepton) charge asymmetry from the Tevatron into PDF sets.
Critical to further constrain the u/d ratio !

Not quite “production quality” yet, but this is going into the 
right direction.
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Constraints on the Higgs boson mass

Gfitter group, 
arXiv:1209.2716 [hep-ph]

Indirect constraint 
on Higgs mass:

    M
H
 = 94 +25

 -22
 GeV

Consistent (1.3 σ) with direct
measurements the mass 
of the new boson 
discovered at CERN.

Alternatively, this test can be “turned around”: use electroweak fit, including measurement of Higgs boson mass,
to predict the W boson mass:

Direct measurement:
M

W
 = 80.385 ± 0.015
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Global electroweak fit
Sept 12 version of Gfitter
standard model fit includes,
in addition to the latest 
theory calculations, the
LEP/SLD precision legacy, …,
various updates:

  - latest top quark combination
    from Tevatron,

  - latest world average
    W boson mass,

  - measurements of the
    “Higgs boson mass” 
    from the LHC.
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Global electroweak fit
Complete fit: 
χ2

min
 = 21.8 for 14 degrees of freedom.

Pull values for the different observables
are shown on the right.

  - no value exceeds 3 sigma

  - largest individual contribution
    to χ2 from FB asymmetry of bottom 
    quarks.

Overall good agreement between precision 
data and standard model.

As is well known, some tension 
between A

l
(SLD) and A

FB

0,b from LEP.
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Global electroweak fit
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Hadronic contributions to α(M
Z
2)

Davier et al., Eur. Phys. J. C71, 1515 (2011)

Burkhardt and Pietrzyk, Phys. Rev. D 84, 037502 (2011)

Electroweak fit requires the knowledge of the electromagnetic coupling strength at the Z mass scale 
to an accuracy of 1% or better.

Hadronic contribution for quarks with masses smaller than M
Z
 cannot be obtained from 

perturbative QCD alone (low energy scale). 

Constrain photon vacuum polarisation function using measured total cross section for 
e+e− annihilation to hadrons above the two-pion threshold.
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Definition of f
Z



Jan Stark CHEF - Lessons from the Tevatron, Paris, 22-25 April 2013 69

Electron energy resolution
Electron energy resolution is driven by two components:
sampling fluctuations and constant term

Sampling fluctuations are driven by 
sampling fraction of CAL modules 
(well known from simulation and 
testbeam) and by uninstrumented 
material. As discussed before, 
amount of material has been 
quantified with good precision.

Constant term is
extracted from Z → e e
data (essentially fit to
observed width of Z peak).

Result:

 C = (2.00 ± 0.07) %

in excellent agreement with
Run II design goal (2%)

m(ee)

GeV

DØ 4.3 fb-1

GeV
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Z data

Good agreement between data and parameterised Monte Carlo.

p
T
(e)m(ee)

m(Z) = 91.193 ± 0.017 (stat) GeV

54.5k
events

GeV GeV

C = (2.00 ± 0.07) %
Run design goal: 2 %
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Z data

Good agreement between data and parameterised Monte Carlo.

METu
T

GeV GeV
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Z data

Good agreement between data and parameterised Monte Carlo.

u
||

p
T
(ee)

GeV GeV



Jan Stark CHEF - Lessons from the Tevatron, Paris, 22-25 April 2013 73

W data

Fit results:

   m(W) =     
       80355 ± 15 MeV (stat)       

MET

D0, 4.3 fb-1
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W data

Good agreement between data and parameterised Monte Carlo.

Here the error bars only reflect the finite
statistics of the W candidate sample.

These are the same W candidates
in the data. The blue band represents
the uncertainties in the fast MC
prediction due to the uncertainties
in the recoil tune from the finite
Z statistics.

u
T

u
T
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