



# Performance of Jet and Missing $E_T$ in CMS

Chayanit Asawatangtrakuldee (Peking University) on behalf of the CMS collaboration

CHEF2013 22-25 April 2013, Paris (France)



# Introduction

#### ★ Jet

 unavoidable at hadron colliders, e.g. quarks and gluons produced in hard scattering of partons

- well-defined by clustering algorithm, e.g. Anti- $k_{\rm T}$  algorithm
- crucially important for many physics analyses



#### ★ Missing Transverse Energy (Missing E<sub>T</sub>, MET)

- momentum imbalance in the transverse plane of all reconstructed particles in an event
- used to estimate the momentum carried away by undetected particles, e.g. neutrinos (SM) and invisible particles (BSM)
- also plays a vital role in many physics analyses
- important to understand the behavior of MET in both data and simulations



# Compact Muon Solenoid (CMS)





## Jet reconstruction & energy correction

Jets are reconstructed using Anti- $k_{\tau}$  clustering algorithm (R = 0.5, 0.7)





#### Jet energy corrections and uncertainty



100 200

1000

p<sub>\_</sub> (GeV)

0<sup>t</sup>

20







After PU+MC truth corrections

★ Jet energy correction uncertainty in function of jet  $p_{T}$  (left) and rapidity ( $\eta$ ) at  $p_T = 100 \text{ GeV}$  (right), dominated by:

- pile-up at low p<sub>T</sub>
- extrapolation at high  $p_{T}$
- relative scale at high n

5



# MET reconstruction algorithms

#### Particle-Flow (PF) MET



★ negative of the vector sum over all transverse momentum of PF-candidates
 ★ used in most current CMS analyses

#### No-PU PF MET

★ divide PF particles into: particles from hard scattering and particles from pile-up

★ contribution from "pile-up" particles is scaled down

★ re-calculate MET from two particles categories above

New

#### MVA PF MET

★ multivariate regression (BDT) that produces a correction for the hadronic recoil

★ 5 MET variables calculated from

PF particles

★ Trainings have been done to optimize the MET resolution



# **MET corrections**

#### ★ Type 1 MET correction

- propagation of jet energy corrections into MET calculation
- applied to PF MET algorithm

#### ★ Type 0 MET correction

- reduce effects of pile-up by subtracting charged hadrons and compensating for remaining imbalance from neutral hadrons
- applied to PF MET algorithm

#### ★ MET Φ-asymmetry correction

- in both data and simulation, there is a shift of MET x and y components which leads to a  $\Phi\text{-asymmetry}$  in MET
- applied to each MET algorithm

#### ★ Jet energy resolution smearing (MC simulations)

- approximately 10% additional smearing on jets in MC in order to better match data
- applied to each MET algorithm



# MET corrections and uncertainty

#### ★ Recoil correction (MC simulation)

- only applied to No-PU PF MET and MVA PF MET
- compensates for differences between data/simulation in both scale and resolution

#### ★ Systematic uncertainty sources

- The propagation of energy scale and energy resolution uncertainties of all reconstructed objects into MET computation
- ✤ Jets : energy scale 5 15%, energy resolution 6 15%

✤ Leptons :

- electron energy scale : 0.6 1.5%
- muon energy scale : 0.2%
- Photon : energy scale : 0.6 1.5%
- Unclustered energy : particles not clustered into jets, leptons or photons
  - energy scale 10%



## Performance of MET filters



★ Performance of MET filters has been studied in di-jets events

★ Anomalous high MET events in data before 2012 cleaning mainly come from:

- misfires of the HCAL laser calibration system
- electronics noise in HCAL
- fake MET from track reconstruction

★ Few remaining anomalous events are removed by applying jet identification cuts

## Performance of MET

★ MET performance studies in three different channels using 2012 data

- $Z \rightarrow \mu \mu$  channel
- $Z \rightarrow ee$  channel
- γ + jets channel
- ★ Good agreement between data/simulation

in all three channels.

Z/γ transverse
 momentum is denoted
 by q<sub>T</sub>



CMS preliminary 2012  $10^{7}$ number of events / 1 GeV data 12.2 fb<sup>-1</sup> at  $\sqrt{s} = 8$  TeV **Z** → μμ  $10^{6}$ EWK top uncertainties 10<sup>5</sup> 10<sup>4</sup>  $10^{3}$  $10^{2}$ 80 100 120 60  $M_{\mu\mu}$  [GeV] number of events / 8 GeV 10<sup>6</sup> 12.2 fb<sup>-1</sup> at √s = 8 TeV 🗕 data γ + Jets 10<sup>6</sup> **QCD** multijets EWK uncertainties 10<sup>4</sup> 10<sup>2</sup> 1.5 Data/MC

200

400

600

q\_ [GeV]



## MET scale and resolution

★ Hadronic recoil vector  $\mathbf{u}_{T}$  is defined by :  $\vec{q}_{T} + \vec{u}_{T} + \vec{k}_{T} = 0$ 



★ Recoil components :

 $\mathbf{u}_{\parallel}$  parallel to the  $q_{T}$  axis and  $\mathbf{u}_{\perp}$  perpendicular to the  $q_{T}$  axis

**\star MET scale** is characterized by -<u<sub>II</sub>>/q<sub>T</sub>

★ MET resolution

the width of  $u_{\parallel} + q_{\top}$  or  $u_{\perp}$  distributions is used to estimate the MET resolution



#### **PF MET distributions**



★ After all corrections applied : type0, type1, phi correction, jet smearing

- Good agreement between data and simulation for the three channels
- Good agreement between  $Z \to \mu \mu$  and  $Z \to ee$  channels as expected

200



## **PF MET recoil components**



★ Good data/simulation agreement for both recoil components in each channel

★ Disagreement in u tail of  $\gamma$  + jets is due to using a LO generator (Pythia)



## PF MET energy scale



★ Data/simulation agree well within systematic uncertainties

★ MET scale in both Z channels reaches unity for  $q_T > 50$  GeV

★ MET scale drops for  $q_T < 50$ GeV due to lack of energy scale correction on unclustered energy

★ MET scale in photon events is lower than Z events for  $q_T <$ 100 GeV due to the difference of quark/gluon jets fraction in hadronic recoil



## PF MET resolution : function of $q_T$

★ MET resolution depends on energy scale of event

 $\bigstar$  PF MET resolution of u\_{\parallel} increases approximately linearly due to jet energy resolution

 $\bigstar$  PF MET resolution of u\_ is dominated by noise and pile-up



★ Good agreement between data/simulation and for the three channels



## PF MET resolution : function of $\Sigma E_T$

- ★ MET resolution depends on total hadronic activity
- $\bigstar$   $\Sigma E_T$  : the scalar sum of  $E_T$  of all PF particles except dileptons from Z's or photons
- $\star$  Z events are reweighted to match photon q<sub>T</sub> spectrum
- ★ The resolution curves are parametrized by :



$$\sigma(\mathbf{E}_{\mathrm{x}},\mathbf{E}_{\mathrm{y}}) = \sigma_0 + \sigma_{\mathrm{s}}\sqrt{\sum E_{\mathrm{T}}}$$

•  $\sigma_0$ : the intrinsic detector noise resolution

•  $\sigma_s$ : the MET resolution stochastic term; ~ 0.6 across all three channels

 $\star$  Good agreement between data/simulation and for the three channels  $_{16}$ 

# PF MET resolution : function of N<sub>vtx</sub>

- ★ MET resolution depends on pile-up
- $\star$  Z events are reweighted to match photon q<sub>T</sub> spectrum  $f(N_{vtx}) = \sqrt{\sigma_c^2 + \frac{N_{vtx}}{0.7} \times \sigma_{PU}^2}$
- $\star$  The resolution curves are parametrized by :

•  $\sigma_{c}$  : resolution coming from detector noise and the hardscatter

•  $\sigma_{PU}$ : the resolution term induced on average by one additional pile-up collision

 factor 0.7 : accounts for the fact that only 70% of pp interactions produce a reconstructed vertex

 $\star$  MET resolution is degraded by ~3.5 GeV in guadrature for each additional pile-up interaction







## MET distributions : three algorithms



★ Good data/simulation agreement in all three algorithms
 ★ No-PU PF MET and MVA PF MET have lower MET tail w.r.t PF MET



## MET resolutions : three algorithms

★ Two new pile-up mitigating algorithms show improve MET resolution versus pile-up w.r.t PF MET

 $\star \sigma_{PU}$  is reduced by a factor of 2 to 3





## Summary

★ Jets and MET are important objects in many physics analyses for both SM and BSM

★ Jets are well understood and calibrated in CMS

★ MET filters have been developed to efficiently remove fake MET events

★ MET performance has been studied and presented in three different channels; a strong agreement is observed between data/simulation and across channels

★ Two new pile-up mitigating MET algorithms, No-PU PF MET and MVA PF MET, have been introduced; the improvement of MET resolution has been shown



## References

★ Jet CMS PAS-JME-10-011

<u>http://arxiv.org/pdf/1107.4277v1.pdf</u>

Public Twiki :

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsJME2012JEC

#### ★ MET

CMS PAS-JME-12-002

• "Performance of Missing Transverse Momentum Reconstruction Algorithms in Proton-Proton Collisions at  $\sqrt{s} = 8$  TeV with the CMS Detector"



# BACKUP



# Performance of MET study

Performance studies have been performed in three different channels.

 $\succ$  Trigger line :  $p_T$  threshold of 17 and 8 GeV

> Kinematic cuts :  $p_T > 20$  GeV, |eta| < 2.1

≻di-muon mass window: 60 to 120 GeV



 $Z \rightarrow \mu \mu$ 

- > Trigger line:  $p_T$  threshold of 17 and 8 GeV
- Kinematic cut:

p<sub>⊤</sub> > 20 GeV, |eta| < 1.444 or 1.57 < |eta| < 2.5

di-electron mass window: 60 to 120 GeV



> Trigger line: for  $p_T < 135$  GeV and  $p_T > 135$  GeV > Kinematic cut:  $p_T > 40$  GeV, |eta| < 1.444



## Pile-up reweighting



★ In order to match the number of pile-up interaction in simulations to the data.

★ Systematic uncertainty sources are from :

- Inelastic scattering crosssection (4.5%)
- Luminosity (2%)

References for the uncertainties : CMS PAS-FWD-11-001 CMS PAS-LUM-12-001



## PF MET recoil components





# MET resolution with Voigtian fit

★ MET resolution is estimated by fitting a Voigtian function to the  $u_{\parallel}$ +q<sub>T</sub> or  $u_{\perp}$  distributions

★ Voigtian function : 
$$V(x;\sigma,\gamma) = \int G(y,\sigma)BW(x-y,\gamma)dy$$

★ MET resolution is given by the width of the Voigtian function :

$$\sigma = \frac{FWHM(V)}{2\sqrt{\ln 2}}$$



#### Parametrization results of MET resolution

#### **★** PF MET resolution vs. $\Sigma E_{T}$

| channel                     | <i>E</i> <sub>x</sub> component |                                                   |                                        |                                                           |  |
|-----------------------------|---------------------------------|---------------------------------------------------|----------------------------------------|-----------------------------------------------------------|--|
|                             | $\sigma_0$ (GeV)                | $R = \sigma_0(\text{data}) / \sigma_0(\text{MC})$ | $\sigma_{\rm s}$ (GeV <sup>1/2</sup> ) | $R = \sigma_{\rm s}({\rm data})/\sigma_{\rm s}({\rm MC})$ |  |
| $\gamma$ + jets             | $0.37\pm0.42$                   | $0.12 \pm 0.14 \pm 0.19$                          | $0.61\pm0.01$                          | $1.15 \pm 0.03 \pm 0.15$                                  |  |
| $Z \rightarrow e^+e^-$      | $0.05\pm0.59$                   | $0.05 \pm 0.59 \pm 0.05$                          | $0.63\pm0.02$                          | $1.07 \pm 0.05 \pm 0.11$                                  |  |
| $Z \rightarrow \mu^+ \mu^-$ | $0.87\pm0.36$                   | $0.40 \pm 0.20 \pm 1.24$                          | $0.62\pm0.01$                          | $1.10 \pm 0.03 \pm 0.14$                                  |  |
|                             | <b>₽</b> <sub>y</sub> component |                                                   |                                        |                                                           |  |
|                             | $\sigma_0$ (GeV)                | $R = \sigma_0(\text{data}) / \sigma_0(\text{MC})$ | $\sigma_{\rm s}$ (GeV <sup>1/2</sup> ) | $R = \sigma_{\rm s}({\rm data})/\sigma_{\rm s}({\rm MC})$ |  |
| $\gamma$ + jets             | $0.17 \pm 0.37$                 | $0.05 {\pm} 0.11 {\pm} 0.13$                      | $0.62 \pm 0.01$                        | $1.17{\pm}0.03{\pm}0.16$                                  |  |
| $Z \rightarrow e^+e^-$      | $0.90 \pm 0.57$                 | $0.45 \pm 0.31 \pm 0.30$                          | $0.59 \pm 0.02$                        | $1.07{\pm}0.05{\pm}0.12$                                  |  |
| $Z \rightarrow \mu^+ \mu^-$ | $1.42 \pm 0.41$                 | $1.02{\pm}0.42{\pm}3.61$                          | $0.60 {\pm} 0.01$                      | $1.02{\pm}0.04{\pm}0.03$                                  |  |

#### **\star** PF MET resolution vs. N<sub>vtx</sub>

| channel                     | u <sub>  </sub> component |                                                           |                         |                                                             |  |  |
|-----------------------------|---------------------------|-----------------------------------------------------------|-------------------------|-------------------------------------------------------------|--|--|
|                             | $\sigma_{\rm c}$ (GeV)    | $R = \sigma_{\rm c}({\rm data})/\sigma_{\rm c}({\rm MC})$ | $\sigma_{\rm PU}$ (GeV) | $R = \sigma_{\rm PU}({\rm data})/\sigma_{\rm PU}({\rm MC})$ |  |  |
| $\gamma$ + jets             | $13.48\pm0.15$            | $0.95 \pm 0.01 \pm 0.06$                                  | $3.73\pm0.03$           | $1.06 \pm 0.01 \pm 0.06$                                    |  |  |
| $Z \rightarrow e^+e^-$      | $13.18\pm0.45$            | $0.97 \pm 0.05 \pm 0.08$                                  | $3.52\pm0.09$           | $1.03 \pm 0.04 \pm 0.08$                                    |  |  |
| $Z  ightarrow \mu^+ \mu^-$  | $15.74\pm0.28$            | $1.06 \pm 0.03 \pm 0.06$                                  | $3.46\pm0.07$           | $1.02 \pm 0.03 \pm 0.04$                                    |  |  |
|                             | $u_{\perp}$ component     |                                                           |                         |                                                             |  |  |
|                             | $\sigma_c$ (GeV)          | $R = \sigma_{\rm c}({\rm data})/\sigma_{\rm c}({\rm MC})$ | $\sigma_{\rm PU}$ (GeV) | $R = \sigma_{\rm PU}({\rm data})/\sigma_{\rm PU}({\rm MC})$ |  |  |
| $\gamma$ + jets             | $7.53\pm0.08$             | $0.92 \pm 0.01 \pm 0.10$                                  | $3.43\pm0.01$           | $1.03 \pm 0.00 \pm 0.06$                                    |  |  |
| $Z \rightarrow e^+e^-$      | $8.39\pm0.41$             | $1.08 \pm 0.08 \pm 0.14$                                  | $3.29\pm0.06$           | $0.97 \pm 0.02 \pm 0.07$                                    |  |  |
| $Z \rightarrow \mu^+ \mu^-$ | $9.55\pm0.23$             | $1.04 \pm 0.04 \pm 0.06$                                  | $3.33\pm0.04$           | $1.00 \pm 0.02 \pm 0.05$                                    |  |  |



## PF MET vs. Calo MET resolution

★ Calo MET is computed from the energy deposits in HCAL and ECAL (calorimeter towers)

★ The resolution of PF MET improves with respect to Calo MET





# The No-PU PF MET algorithm

#### **★ Principle:** divide PF particles into two categories

- **PF particles from hard scatter interaction (HS particles):** leptons/photons, PF particles within jets of  $p_T > 30$  GeV and pass the MVA PU-jet ID, charged hadrons not clustered within jets of  $p_T > 30$  GeV and associated to the HS vertex
- **PF particles from pile-up (PU particles):** charged hadrons that are neither within jets of  $p_T > 30$  GeV nor associated to the HS vertex, neutral PF particles within jets of  $p_T > 30$  GeV, PF particles within jets of  $p_T > 30$  GeV and fail the MVA PU-jet ID
- ★ PF particles from pile-up are scaled down by a factor :

$$S_{
m F} = rac{\sum_{
m HS-charged} p_{
m T}}{\sum_{
m HS-charged} p_{
m T} + \sum_{
m PU-charged} p_{
m T}}.$$

★ No-PU PF MET is computed from :

$$\vec{E}_{T} = -\left[\sum_{\text{leptons}} \vec{p}_{T} + \sum_{\text{HS-jets}} \vec{p}_{T} + \sum_{\text{HS-charged}} \vec{p}_{T} + S_{F} \cdot \left(\alpha \cdot \sum_{\text{PU-charged}} \vec{p}_{T} + \beta \cdot \sum_{\text{neutrals}} \vec{p}_{T} + \gamma \cdot \sum_{\text{PU-jets}} \vec{p}_{T} + \delta \cdot \vec{\Delta}_{\text{PU}}\right)\right].$$

 $\alpha,\beta,\gamma,\delta$  optimized on  $Z\to\mu\mu$  to get the best MET resolution

#### CHEF2013



### No-PU PF MET scale and resolution





# The MVA PF MET algorithm

**★ Principle:** multivariate regression (BDT) which produces a correction of the hadronic recoil  $(u_T)$ . The corrected  $u_T$  is then added to  $q_T$  to obtain the negative MVA PF MET

★ Two steps of the BDT regression:

- a correction to the azimuthal angle of u<sub>T</sub>
- a correction of the magnitude of **u**<sub>T</sub>
- ★ Input variables to the BDT regression:
- recoil magnitude and azimuthal angle associated to the following METs :

1) MET based on all PF particles (PF MET)

2) MET based on charged PF particles associated to the HS vertex

3) MET based on charged PF particles associated to the HS vertex + neutrals PF particles within jets and pass the MVA PU-jet ID

4) MET based on charged PF particles not associated to the HS vertex + neutrals PF particles within jets but fail the MVA PU-jet ID

5) MET based on charged PF particles associated to the HS vertex + all neutrals PF particles subtract neutrals PF particles within jets but fail the MVA PU-jet ID

- vector **p**<sub>T</sub> of two leading jets
- number of primary vertices



## MVA PF MET scale and resolution

