Upgrade Plans for ATLAS Forward Calorimetry for the HL-LHC

Peter Krieger, University of Toronto CHEF, April 24, 2013, Paris

On behalf of the ATLAS Liquid Argon Calorimeter Group

The ATLAS Detector

The ATLAS Liquid Argon Calorimeter

The ATLAS Liquid Argon Endcap Calorimeter

The ATLAS Liquid Argon Endcap Calorimeter

The ATLAS Liquid Argon Forward Calorimeter

The ATLAS Liquid Argon Endcap Calorimeter

The ATLAS LAr Forward Calorimeter

- Thin annular gaps formed by electrodes consisting of concentric rod and tube.
 - Very narrow LAr gaps needed to avoid ion buildup that would distort the electric field.
 - Gap sizes (269/375/500 μm) chosen for operation \mathcal{L}_{inst} up to 10³⁴ cm⁻²s⁻¹.
 - High voltage supplied to electrode via $1M\Omega$ or $2M\Omega$ resistors on summing boards located inside the endcap cryostats, on the rear face of the HEC [see also backup slides].

LHC Luminosity Upgrade (HL-LHC)

- Plan is for $\mathcal{L}_{inst} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, $\mathcal{L}_{int} = 3000 \text{ fb}^{-1}$.
- ATLAS detector was not designed to run at this luminosity and some components can / may not survive the integrated dose.
- Issues for the liquid argon calorimeter:
 - Designed for $\mathcal{L}_{inst} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, $\mathcal{L}_{int} = 1000 \text{ fb}^{-1}$.
 - Performance of the front-end electronics (not discussed here)
 - Radiation hardness of HEC GaAs cold preamplifiers (inside endcap cryostat)
 - Performance issues for the Forward Calorimeter (FCal):
 - Ion buildup affecting the electric field in the gap: depends on \mathcal{L}_{inst} and r: e.g. the very narrow FCal LAr gaps are no longer narrow enough.
 - Higher current draw
 — significant voltage drop across current limiting resistors. These are located inside the endcap cryostat.
 - High ionization load → potential for boiling of liquid argon.
- FCal upgrade paths tightly coupled to decision on HEC cold GaAs preamplifiers (see talk by Martin Nagel in this session).

FCal Performance at High Luminosity

 Plot shows combined effects of decreased field (HV drop) and ion buildup on FCal performance.

- Result is degraded response in the high $|\eta|$ regions
- Degraded region grows with instantaneous $\mathcal{L}_{\text{inst}}$
- Has performance implications, in particular for:
 - Missing E_⊤ resolution, tails
 - Forward jet tagging

- Upgrade goal: maintain the existing FCal performance at HL-LHC luminosities
- Two approaches for addressing these problems:
 - 1. Replace FCal with improved detector (sFCal) smaller gaps, new summing boards (lower resistances) and cooling loops (to avoid LAr boiling).
 - Requires opening of cryostat and a long shutdown.
 - 2. Small calorimeter in front of FCal (absorb particle flux at high η):
 - Referred to as the Mini-FCal: addresses all issues / three designs considered so far.
 - Does not require opening of the cold volume of cryostats.

Option 1: FCal replacement (sFCal)

- Design similar to existing FCal but:
 - Smaller LAr gaps ≈ (100/200/300 μm): a small 100 μm prototype has been operated successfully in high intensity tests in Protvino, Russia (below):
 - Critical intensity of this test above proposed HL-LHC $\mathcal{L}_{ ext{inst}}$
 - Design relevant also to LAr Mini-FCal option
 - Need new cooling loops, new summing boards with lower value resistors
 - Also need to make connections to new summing boards (two options)

depending on whether cryostat cold cover needs to be removed

Option 2: Small Calorimeter in front of FCal

- FCal problems all related to increased current draw / ionization load.
- All are potentially addressed by reducing the amount of energy deposited in the inner part of the FCal.
- Absorb some of the energy upstream with a small calorimeter (Mini-FCal).

- Does not require opening of the endcap cryostat cold volume:
 - Simplest solution if HEC preamps do not need to be replaced.
- Need very radiation hard device

Mini-FCal Technology Options (1)

- Initial design: parallel plate warm calorimeter with copper plates and pCVD diamond sensor layers (illustrated on previous slide).
 - Diamond sensors investigated in two beam tests (irradiation, uniformity)
 - 5% of signal left after nominal HL-LHC exposure (proton irradiation)
 - Sensor manufacturer (DDL) ceased operations in May 2012.
 - Diamonds expensive and will have time dependent calibration (beam test results in backup slides: damage curves input to simulation below)
 - Performance (full simulation) illustrated below (includes radiation damage effects but not sensor response uniformity)

Effect of transition from Mini-FCal to FCal1

Mini-FCal Technology Options (2)

- Parallel plate warm design with copper absorber & high-pressure Xenon:
 - Still needs basic R&D on gas properties at required pressure (up to 10 bar)
- Cold copper / LAr device [based on FCal1 design with 100 μm LAr gaps]:
 - Initial design had technical problem and lots of material associated with feed-throughs
 - New design as of Sept. 2012
 - Separate LAr cryostat

LAr gaps.

Summary

- Existing FCal will not function properly at the HL-LHC.
- Four upgrade paths, depending on whether HEC electronics need replacement:
 - In either case we can:
 - 1 Do nothing (loss of performance being studied)
 - If replacing HEC electronics:
 - 2 Replace FCal with sFCal and old summing boards with new summing boards at rear of HEC (with 10 times lower HV protection resistors)
 - If NOT replacing the HEC electronics:
 - 3 Replace FCal with sFCal with it's own summing boards (abandon old ones)
 - 4 Mini-FCal (need to decide on technology).
- Work on simulations (physics case and performance) continues.
- All options [sFCal + Mini-FCal(s)] described in LAr section of ATLAS Phase-2 LOI
- sFCal R&D and construction time estimate ~ 7 years.
 - Would need to start by 2015, so need a decision by ~ end of 2014.

FCal Upgrade Scenarios

Backup Slides

Use of FCal in ATLAS Physics Analyses

- Measurement of E_T flow in minimum-bias events and studies of the underlying event over full acceptance of ATLAS calorimeter (for generator tuning).
- Measurement of inclusive jet and dijet cross-sections for jet rapidities out to 4.4.

- Forward electrons (e.g. for Z A_{FB} measurement presented this week at DIS2013)
- Used for centrality and event plane determination in Heavy Ion analyses.
- Important for missing-E_T resolution, forward-jet tagging.

Issues for HEC GaAs (Cold) Preamplifiers

- Preamps sit on HEC modules inside cryostat.
- Performance OK for LHC design parameters, but may be significant degraded for integrated dose at HL-LHC.
- Irradiation → reduced output, non-linear response: unevenly for different channels. Channels summed in the cold so cannot correct for this in FE electronics.
- To install new preamps, need to remove HEC wheels from the cryostats.
- Requires removal of both warm and cold covers of cryostat. The latter is welded shut. Also requires removal of FCal.
- Results of most recent irradiation tests (in warm and cold) indicate that HEC electronics would be operating at its limit at HL-LHC (for safety factor of 5).
- Still need better understanding of actual cavern radiation levels in region of HEC cold electronics.

[See talk by M. Nagel in this session]

Copper / pCVD Diamond Mini-FCal Design

- 12 absorber plates (22.25 mm thick) with 11 detector planes (\approx 18.8 $\rm X_0$)
- Absorber plates are copper (tungsten would give 3 x the neutron flux)
- Detector plane is ceramic disc covered with rings of ~1 cm² diamond detectors
 use trapezoidal shape to minimize cracks.
- Reduce gaps by tiling both sides of disc in checkerboard pattern
- Roughly 8000 sensors / Mini-FCal.

Diamond Sensor Ganging and Irradiation

- 8000 sensors / Mini-FCal: readout limits number of channels to $< 10^3$. Ganging scenarios studied in simulation (transverse and longitudinal).
- Complicated by the differential radiation damage of wafers due to the difference in the fluence over the Mini-Fcal volume.
- The fluence changes rapidly in some regions with r and z. Need to gang in both.

Challenges for the Diamond Mini-FCal

- Main issue is radiation hardness of the sensors: previous diamond irradiation tests (RD42) irradiated with protons only up to $2x10^{16}/cm^2$.
- Exposure at HL-LHC expected to be $\approx 2 \times 10^{17}$ particles/cm² in the region $\eta > 4.0$.
- Tests undertaken using 500 MeV proton beam from the TRIUMF cyclotron.
- Responses of 2 DDL pCVD detector grades (optical, electronic) with two different metallizations (TiW-Al, Au-Pt) were continuously monitored during (average) exposure 2.2 x 10¹⁷ p/cm²

- Peak exposure ~ 5 x 10¹⁷ p/cm² at centre of detector
- Damage curves used as input to Mini-FCal simulations.

Neutrons in the Mini-FCal

Figure 3. Neutron flux in the region of the Mini-FCal (kHz/cm^{-2}) produced using Phojet/G-Calor. The numbers shown are neutron fluences in kHz/cm^{-2} at LHC intensities. The horizontal scale is the distance in meters from the Interaction Point. The vertical scale is exaggerated for clarity. The peak neutron flux in the Mini-FCal is 4.7×10^5 kHz.cm⁻² which corresponds to an integrated dose of 1.5×10^{17} cm⁻² for an integrated flux of 3000 fb⁻¹. Different generators give variations of up to 25% in the neutron flux.

Diamond sensors also shown to function after exposure to $1.5 \times 10^{17} \text{ n/cm}^{-2}$ (IBR-2m reactor in Dubna: also used for sFCal / Mini-FCal material testing).

sFCal: Summing Board Locations

- If HEC is removed this is straightforward: new summing boards on rear of HEC
- If cryostat does not need to be opened:
 - Install new summing boards at back of FCal
 - Thread the cable between the old summing board and the plug in front of cold cover OR
 - Install new feedthrough in FCal region

Forward HV Distribution / Signal Summing

HV distribution and signal summing done on boards mounted to HEC rear face

HV delivered via $1M\Omega$ or $2M\Omega$ resistors in the cold. Need to reduce by factor of 10 for HL-LHC operation.

ATLAS Liquid Argon Endcap Cryostat

