Upgrade Plans for ATLAS Forward Calorimetry
for the HL-LHC

Peter Krieger, University of Toronto
CHEF, April 24, 2013, Paris

On behalf of the ATLAS Liquid Argon Calorimeter Group
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The ATLAS Detector
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The ATLAS Liquid Argon Calorimeter
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The ATLAS Liquid Argon Endcap Calorimeter

Beam axis
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The ATLAS Liquid Argon Endcap Calorimeter

Beam axis
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The ATLAS Liquid Argon Forward Calorimeter
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The ATLAS Liquid Argon Endcap Calorimeter
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The ATLAS LAr Forward Calorimeter

Thin annular gaps formed by electrodes consisting of concentric rod and tube.

— Very narrow LAr gaps needed to avoid ion buildup that would distort the electric field.

— Gap sizes (269/375/500 ym) chosen for operation £, up to 1034 cm=2s".

— High voltage supplied to electrode via 1MQ or 2MQ resistors on summing boards located
inside the endcap cryostats, on the rear face of the HEC [see also backup slides].

Non-readout side of FCal3
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LHC Luminosity Upgrade (HL-LHC)

* Planisfor £, =5x10%cm=s?, £ . =3000 fb.

e ATLAS detector was not designed to run at this luminosity and
some components can / may not survive the integrated dose.

* |Issues for the liquid argon calorimeter:

ingt = 10°* cm2st, L. =1000 fb.

— Performance of the front-end electronics (not discussed here)

— Designed for L

— Radiation hardness of HEC GaAs cold preamplifiers (inside endcap cryostat)
— Performance issues for the Forward Calorimeter (FCal):

* |lon buildup affecting the electric field in the gap: dependson L. . and r:

mst
e.g. the very narrow FCal LAr gaps are no longer narrow enough.

* Higher current draw —> significant voltage drop across current limiting
resistors. These are located inside the endcap cryostat.

* High ionization load —> potential for boiling of liquid argon.

* FCal upgrade paths tightly coupled to decision on HEC cold GaAs
preamplifiers (see talk by Martin Nagel in this session).
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FCal Performance at High Luminosity

Electrode at luminosity and HV of
5x10%em?s’ 250V
— 1x10%*em?s’ 190V
— 3x10%cm?s’ 117V
6x10* em2s’ 74V
— 1x10¥em?s’ 46V

* Plot shows combined effects of decreased field
(HV drop) and ion buildup on FCal performance.  «f

— Result is degraded response in the high |n| regionsg’“:

o
— Degraded region grows with instantaneous L, § I

8 o
— Has performance implications, in particular for: =

* Missing E; resolution, tails
* Forward jet tagging

- — A l A ) ——
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 Upgrade goal: maintain the existing FCal performance at HL-LHC luminosities

« Two approaches for addressing these problems:

1.  Replace FCal with improved detector (sFCal) - smaller gaps, new summing boards
(lower resistances) and cooling loops (to avoid LAr boiling).
e Requires opening of cryostat and a long shutdown.

2. Small calorimeter in front of FCal (absorb particle flux at high n):
* Referred to as the Mini-FCal: addresses all issues / three designs considered so far.

* Does not require opening of the cold volume of cryostats.
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Option 1: FCal replacement (sFCal)

* Design similar to existing FCal but:

— Smaller LAr gaps = (100/200/300 pm): a small 100 um prototype has been
operated successfully in high intensity tests in Protvino, Russia (below):

* Critical intensity of this test above proposed HL-LHC L.

nst
* Design relevant also to LAr Mini-FCal option

— Need new cooling loops, new summing boards with lower value resistors

— Also need to make connections to new summing boards (two options)

depending on whether cryostat

Signal cabling | cold cover needs to be removed
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Option 2: Small Calorimeter in front of FCal

* FCal problems all related to increased current draw / ionization load.

e All are potentially addressed by reducing the amount of energy deposited
in the inner part of the FCal.

* Absorb some of the energy upstream with a small calorimeter (Mini-FCal).

—— Without Mini-FCal

- With Mini-FCal

preliminary

Diamond
Mini-FCal

0 450 500 550
R[mm]

* Does not require opening of the
endcap cryostat cold volume:

— Simplest solution if HEC preamps do
not need to be replaced.

* Need very radiation hard device
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Mini-FCal Technology Options (1)

* Initial design: parallel plate warm calorimeter with copper plates and pCVD

diamond sensor layers (illustrated on previous slide).

energy (GeV)

Diamond sensors investigated in two beam tests (irradiation, uniformity)

o 5% of signal left after nominal HL-LHC exposure (proton irradiation)

Sensor manufacturer (DDL) ceased operations in May 2012.

Diamonds expensive and will have time dependent calibration (beam test results

in backup slides: damage curves input to simulation below)

Performance (full simulation) illustrated below (includes radiation damage effects

but not sensor response uniformity)
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Mini-FCal Technology Options (2)

Parallel plate warm design with copper absorber & high-pressure Xenon:
— Still needs basic R&D on gas properties at required pressure (up to 10 bar)

Cold copper / LAr device [based on FCall design with 100 pum LAr gaps]:
— Initial design had technical problem and lots of material associated with feed-throughs
— New design as of Sept. 2012

* Separate LAr cryostat
* Feed-through not in front of Mini-Fcal

— less dead material
* Engineering design work in progress

Cryogenic line carries HV/signal cables

Neutron FCal-style tubular copper
moderator electrodes with 100 um
~—~ LAr gaps.
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Summary

Existing FCal will not function properly at the HL-LHC.

Four upgrade paths, depending on whether HEC electronics need replacement:
— In either case we can:
(D Do nothing (loss of performance being studied)
— If replacing HEC electronics:

(@ Replace FCal with sFCal and old summing boards with new summing
boards at rear of HEC (with 10 times lower HV protection resistors)

— If NOT replacing the HEC electronics:
3 Replace FCal with sFCal with it’s own summing boards (abandon old ones)
4 Mini-FCal (need to decide on technology).

Work on simulations (physics case and performance) continues.
All options [sFCal + Mini-FCal(s)] described in LAr section of ATLAS Phase-2 LOI

sFCal R&D and construction time estimate ~ 7 years.
— Would need to start by 2015, so need a decision by ~ end of 2014.
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FCal Upgrade Scenarios

Backup Slides



Use of FCal in ATLAS Physics Analyses

Measurement of E; flow in minimum-bias events and studies of the underlying
event over full acceptance of ATLAS calorimeter (for generator tuning).

Measurement of inclusive jet and dijet cross-sections for jet rapidities out to 4.4.
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Forward electrons (e.g. for Z A.; measurement — presented this week at DIS2013)

Used for centrality and event plane determination in Heavy lon analyses.
Important for missing-E; resolution, forward-jet tagging.
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Issues for HEC GaAs (Cold) Preamplifiers

Preamps sit on HEC modules inside cryostat.

Performance OK for LHC design parameters, but may be
significant degraded for integrated dose at HL-LHC.

Irradiation = reduced output, non-linear response:
unevenly for different channels. Channels summed in
the cold so cannot correct for this in FE electronics.

To install new preamps, need to remove HEC wheels 2
from the cryostats. ii of response
S
Requires removal of both warm and cold covers of 3o
cryostat. The latter is welded shut. Also requires £
removal of FCal. ; 5
R T [ R T - e A

Neutron Fluence (n/cm?)

Results of most recent irradiation tests (in warm and
cold) indicate that HEC electronics would be
operating at its limit at HL-LHC (for safety factor of 5).

non-linearit / g

o

Still need better understanding of actual cavern radiation i >
levels in region of HEC cold electronics. e
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Copper / pCVD Diamond Mini-FCal Design

* 12 absorber plates (22.25 mm thick ) with 11 detector planes (=18.8 X,)
* Absorber plates are copper (tungsten would give 3 x the neutron flux)

» Detector plane is ceramic disc covered with rings of ~1 cm? diamond detectors
— use trapezoidal shape to minimize cracks.

* Reduce gaps by tiling both sides of disc in checkerboard pattern
* Roughly 8000 sensors / Mini-FCal.

Inner radii
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Diamond Sensor Ganging and Irradiation

* 8000 sensors / Mini-FCal: readout limits number of channels to < 103. Ganging
scenarios studied in simulation (transverse and longitudinal).

 Complicated by the differential radiation damage of wafers due to the
difference in the fluence over the Mini-Fcal volume.

 The fluence changes rapidly in some regions with r and z. Need to gang in both.
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Challenges for the Diamond Mini-FCal

Main issue is radiation hardness of the sensors: previous diamond irradiation
tests (RD42) irradiated with protons only up to 2x10'%/cm?.

Exposure at HL-LHC expected to be = 2x10Y particles/cm? in the region n > 4.0.
Tests undertaken using 500 MeV proton beam from the TRIUMF cyclotron.

Responses of 2 DDL pCVD detector grades (optical, electronic) with two different
metallizations (TiW-Al, Au-Pt) were continuously monitored during (average)
exposure 2.2 x 107 p/cm?

| Normalized Integral All Detectors |

500
450F- * Peak exposure ~ 5 x 10" p/cm? at
T, . centre of detector
‘s 400— Black = EL200 TiW-Al ]
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Neutrons in the Mini-FCal

Figure 3. Neutron flux in the region of the Mini-FCal (kHz/cm~2) produced using Phojet/G-Calor.
The numbers shown are neutron fluences in kHz/cm~? at LHC intensities. The horizontal scale is the
distance in meters from the Interaction Point. The vertical scale is exaggerated for clarity. The peak
neutron flux in the Mini-FCal is 4.7 x 10° kHz.cm 2 which corresponds to an integrated dose of 1.5
x 10" ¢m~2 for an integrated flux of 3000 fb—!. Different generators give variations of up to 25% in
the neutron flux.

Diamond sensors also shown to function after exposure to 1.5 x 1017 n/cm2 (IBR-2m
reactor in Dubna: also used for sFCal / Mini-FCal material testing).
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sFCal: Summing Board Locations

e If HEC is removed this is straightforward: new summing boards on rear of HEC

* If cryostat does not need to be opened:
* Install new summing boards at back of FCal
* Thread the cable between the old summing board and the plug in front of cold cover OR
* Install new feedthrough in FCal region

_ o New summing boards could be mounted
Signal cabling on FCal cold bulkhead

T
LN, cooling pipes

.....
....

Need to ensure slightly reduced depth
Plug would still be OK for shielding
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Forward HV Distribution / Signal Summing

HV distribution and signal summing done on boards mounted to HEC rear face

P.Krieger, University of Toronto

FCal Cold Electronics Chain JPR
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HV delivered via 1IMQ or 2MQ resistors in the cold.
Need to reduce by factor of 10 for HL-LHC operation.
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id Argon Endcap Cryostat
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