

Micromegas for Particle Flow Calorimetry

Application for gaseous sampling hadron calorimetry with multi-thresholds readout

M. Chefdeville, on behalf of the LC Detector group of CNRS/IN2P3/LAPP, Annecy

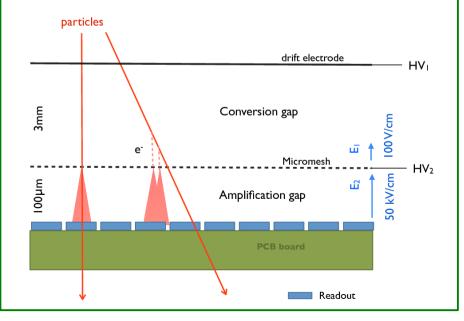
CHEF conference, Paris, 22nd-25th of April 2013

Outline

- Introduction (2)
 - Micromegas operating principle
 - Micromegas in the CALICE collaboration
 - Expected performance of a gaseous calorimeter with multi-threshold readout (semi-digital HCAL)
- Overview of the R&D (3)
 - Large area Micromegas with integrated front-end electronics
 - PCB and ASIC design, protection against gas discharges
 - Software and DAQ
- Measured performance (8)
 - X-ray results: position, threshold and mesh voltage scans (1)
 - MIP results: efficiency, hit multiplicity, uniformity over m² areas, Landau distribution (3)
 - Pion shower results: necessary gas gain, rate, shower profile, response of a deep calorimeter (4)
- Conclusion and future challenges (1)

Introduction: Micromegas in the CALICE collaboration

Operating principle

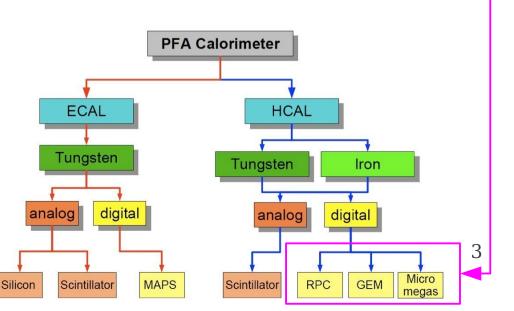

<u>Ionisation</u> in 3 mm gap filled with argon 30 pairs in 3 mm from MIPs

Drift Collection at the mesh in 50 ns

<u>Multiplication</u> in 128 μ m gap By factor > 10⁴, controlled by the mesh voltage Takes ~1 ns for electrons and ~100 ns for ions

MIP signal

Between 1-20 fC depending on mesh voltage

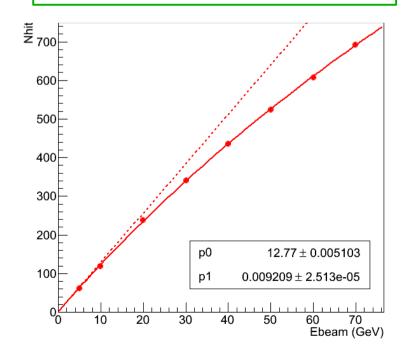

R&D in CALICE

Focuses on sampling calorimeters with fine transverse & longitudinal segmentation \rightarrow silicon & scintillators for the ECAL \rightarrow scintillators & gas for the HCAL

The CALICE digital HCAL

Steel (4.5 λ_{int} deep in ILC-SiD) or tungsten absorbers Gaseous detectors with 1x1 cm² pads Sampling fraction ~ 10⁻⁵

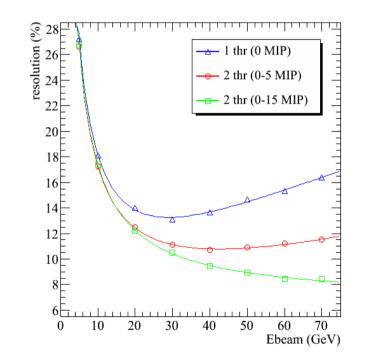
 \rightarrow digital readout 1-bit \rightarrow DHCAL



Fe-DHCAL: energy resolution for single pions (Monte Carlo study)

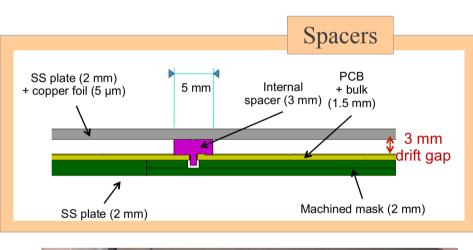
Calorimeter model in Geant4

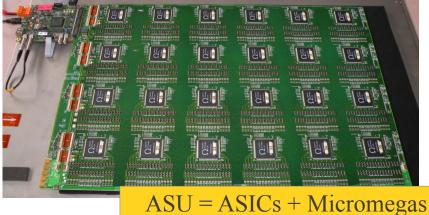
 $\frac{100 \text{ layers of } 1 \times 1 \text{ m}^2}{10 \lambda_{\text{int}} \text{ deep}}$ Passive layers: mainly <u>17 mm of steel</u>
Active layers: <u>3 mm of gas</u> with 1x1 cm² pads
Threshold / cell ~ 0.1 MIP
10⁴ pion / energy from 5-70 GeV

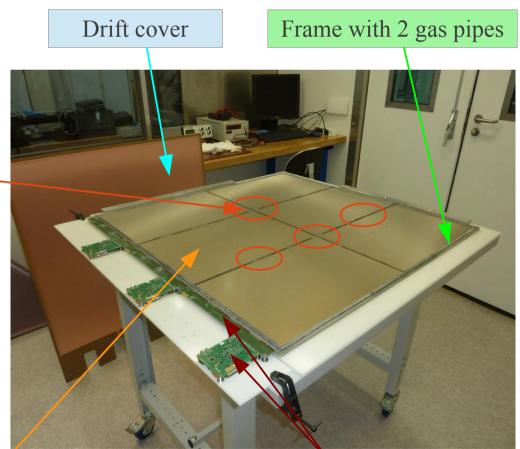

Saturation of the pion response because of the <u>concentrated EM energy</u>: Shower size (R_M & X₀) VS pad size!

Energy resolution with 1 or 2 thresholds

<u>1 threshold</u> (DHCAL) Degradation of the energy resolution above 30 GeV


<u>2 thresholds</u> (semi-digital HCAL, SDHCAL) Correction of the saturation possible at least up to 70 GeV




Need <u>at least 2 thresholds</u> \rightarrow 2-bit electronics Need gas detector <u>free of space charge effects</u> otherwise signal (2 MIP) \leq 2.signal(1 MIP) \rightarrow **Micromegas**

R&D: large area Micromegas with integrated electronics

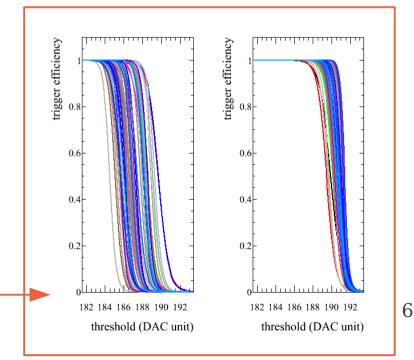
Large area chambers are built from a basic unit called Active Sensor Unit (or ASU) of $32x48 \text{ cm}^2$ A $1x1 \text{ m}^2$ prototype consists of 3 slabs with DIF + interDIF + ASU + ASU This design introduces very little dead zone (below 2%) and is fully scalable to larger sizes The drift gap is defined by small spacers and a frame The final chamber thickness is 9 mm

Readout boards (DIF+interDIF) Also provide ASIC LV & mesh HV

R&D: Printed Circuit Board and ASIC design

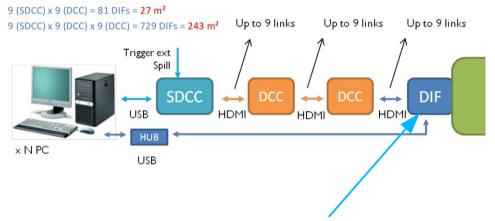
Active Sensor Unit (ASU)

= PCB with 1536 pads + 24 ASICs + 1 Micromegas mesh
Possibility to read out <u>analogue signals</u> to the DIF
Spark protections = 1 diode network / channel


Flexible interconnection on two opposite sides → ASU chain successfully tested over 2 m (= 4 ASUs)

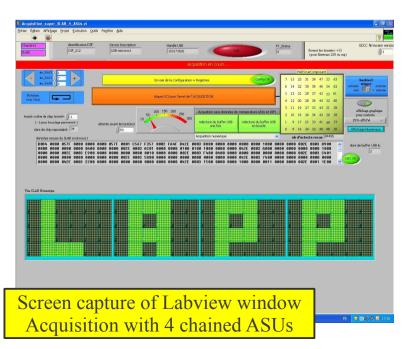
The MICROROC ASIC (LAPP/Omega)

<u>64 self-triggered channels</u> → matrix of 8x8 pads
<u>Low noise charge preamplifier</u>
2 shapers of ≠ gain (100 & 500 fC dynamic range)
3 discriminators (= 3 thresholds)
Digital memory of 127 events, 200 ns time-stamping
Power-pulsing


Pedestal alignment \rightarrow threshold/channel of ~ 1 fC reached

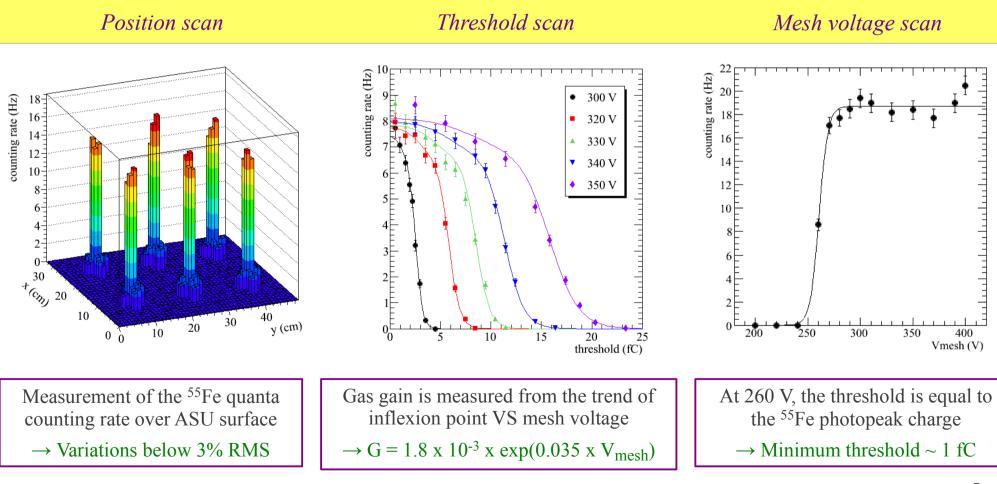
R&D: data acquisition system and software

We are using a DAQ developed by LAPP and IPNL for operating the SDHCAL in 2012 Compatible with RPCs and Micromegas; successfully tested up to 50 layers Architecture based on <u>Data Concentrator Cards</u> (DCC) and <u>Detector Interface boards</u> (DIF)


DIF: interface between DAQ and detector

Distribute power and clock to the ASIC Write ASIC configuration, read ASIC data Control acquisition signals (trigger, busy...)

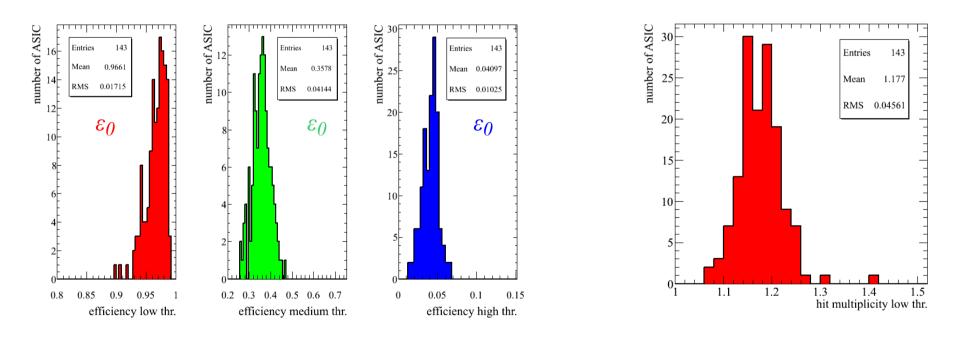
USB port \rightarrow transmit data HDMI port \rightarrow transmit clock and control signals


Software for small number of layers

Labview based program Suitable for calibration and physics runs Provide easy control of all ASIC parameters

X-ray results in a gas mixture of Ar/CF₄/iC₄H₁₀ 95/3/2

All ASUs are tested in a gaseous chamber before assembly inside a $1x1 \text{ m}^2$ prototype The chamber steel cover is perforated so the response of any channels can be tested with an ⁵⁵Fe source

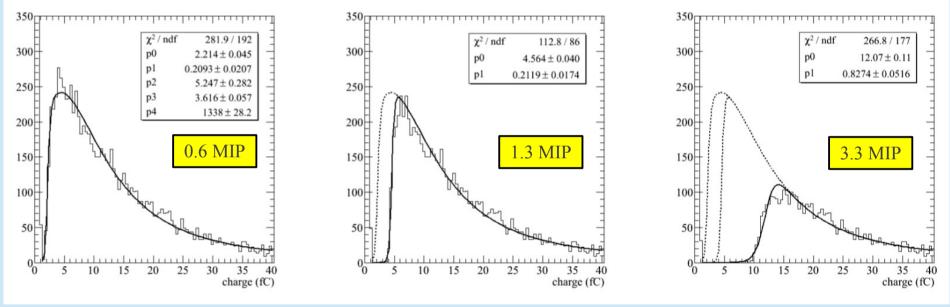


MIP results: efficiency and hit multiplicity

Performance to 100 GeV/c muons measured inside the SDHCAL using RPCs as telescope \rightarrow Map of efficiency and hit multiplicity per ASIC (i.e. 8x8 cm² regions) for the 3 thresholds Threshold settings for this run are (~0.25, 2, 10) MIPs, mesh voltage of 400 V (gas gain ~ 2000)

Hit multiplicity – *low thr.* $(m_0 < 1.2)$

Efficiency - *three thresholds* ($\varepsilon_0 > 96\%$)

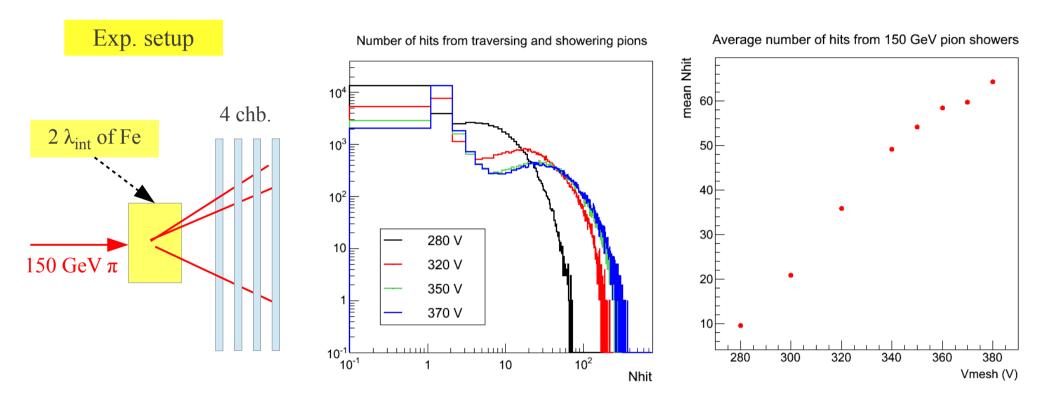

Relative efficiency variations of 2%, 12% and 25% for low, medium and high thresholds respectively \rightarrow reflects gas gain and thresholds non-uniformity over channels

Variations of threshold efficiency will eventually impact on the compensation performance of a SDHCAL! 9 \rightarrow The analogue readout can be used to measure and adjust correctly the thresholds.

MIP results: analogue readout of shaper signals

Combine analogue and digital information \rightarrow Landau distribution with cuts on passed thresholds

Landau distribution measured on 3 ASICs (~ 200 cm²) with cuts on the passed thresholds



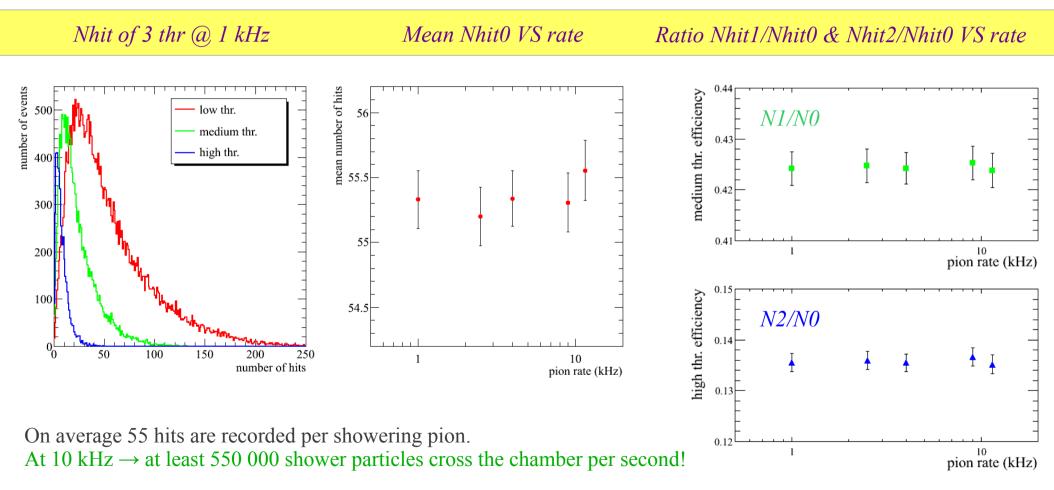
The thresholds can be measured in MIP units which is the natural energy unit of a calorimeter No knowledge of gas gain or electronic gain involved!

 \rightarrow Dedicated calibration runs to monitor the thresholds

Pion shower results: operating gas gain

Operation at low gas gain is always preferred and possible!

<u>The number of hits from 150 GeV pions measured after 2 λ_{int} reaches a plateau at 360 V</u>


 \rightarrow A gas gain of 500 only is sufficient to image most of the shower!

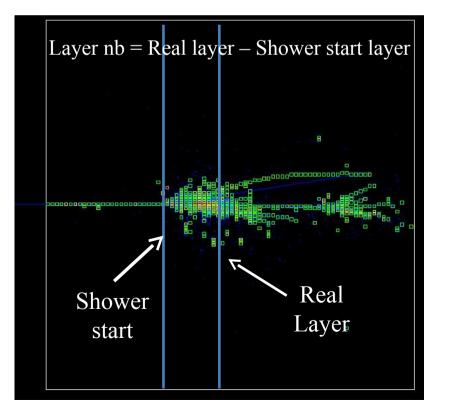
The 4 chambers are used to tag traversing and showering pions: > 90% of pions start a shower.

Above 370 V, the average number of hits increases due to the increased single particle hit multiplicity. 11

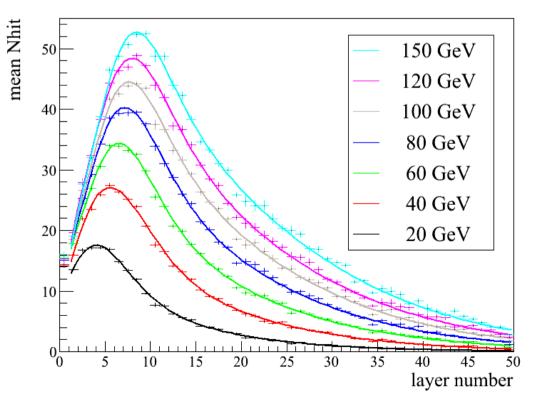
Pion shower results: effect of beam rate

Expected and verified: no rate dependence of the response up to at least 10 kHz pion rate The 4 chambers are used to tag traversing and showering pions: > 90% of pions start a shower Mesh voltage of 360 V \rightarrow Gas gain \sim 500 \rightarrow Very stable operation

<u>High rate capability</u> of Micromegas \rightarrow can be applied in barrel and endcaps of a LC experiment!


Pion shower results: longitudinal profiles

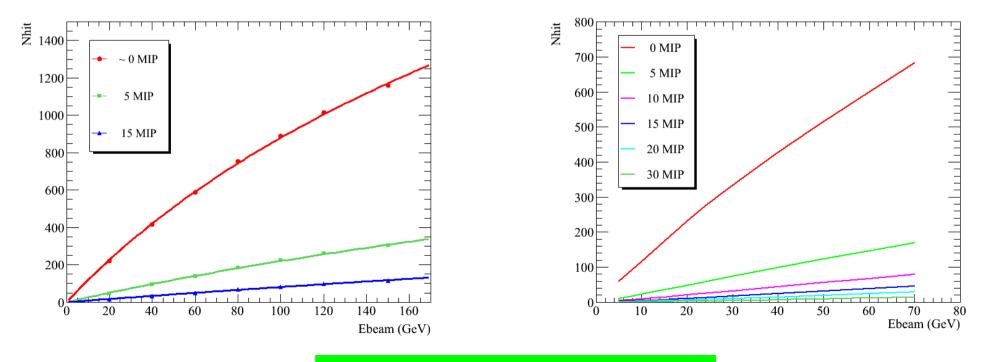
Set-up: the SDHCAL with 46 RPCs and 4 Micromegas (layer 10, 20, 35, 50) at the CERN/SPS


Take advantage of the large fluctuations of the starting point of hadron showers

 \rightarrow At each event, Micromegas chambers shift w.r.t. the shower start

Find the shower start using all SDHCAL chambers & measure Nhit in Micromegas chambers only \rightarrow longitudinal profile of pion showers in a virtual 50 layers Micromegas SDHCAL!

Longitudinal profile of pions showers (low thr.)


Pion shower results: calorimeter response (Data & Monte Carlo)

By integration of the profiles, we measure the response of a virtual 50 layer Micromegas SDHCAL for the 3 thresholds!

We are now comparing the testbeam data with the simulation, exciting work ahead...

Testbeam data (20-150 GeV)

Geant4 simulation (5-70 GeV)

On-going analysis work

Conclusion and future plans

- We are studying Micromegas detectors for hadron calorimetry at a future LC
 - Four chambers of 1x1 m² were built & tested
 - Excellent performance measured so far
- A Geant4 model of a Micromegas SDHCAL has been implemented
 - Data and Monte Carlo comparison is on-going
 - It also predicts that the single pion energy resolution of a gaseous Fe-HCAL can greatly benefit from a multi-threshold readout
 For such SDHCAL, Micromegas is more than competitive with RPCs
- Future challenge: simplify the chamber design and lower the costs
 - Replace PCB components for spark protection by a resistive layer on the anode
 RPC quenching principle without the drawbacks (much lower space charge)
 - Go beyond 1x1 m² area with a single mesh \rightarrow new mechanical design