Discovery Potential of KM3NeT to Galactic Sources

Apostolos Tsirigotis, Antonis Leisos, Spyros Tzamarias Physics Laboratory H.O.U

Outline

- The UnBinned method for estimating the DP
- KM3NeT (DU:strings) DP for RXJ1713 & Vela X sources
- Estimation taking into account the known source direction

KM3NeT Phase-1 Meeting 29-31 January 2013 Marseille

 $P(E_{\mu}, \Delta \Omega_{disk}) = P(E_{\mu}, \Delta \Omega_{disk} / signal) \cdot P_{signal} + P(E_{\mu}, \Delta \Omega_{disk} / bck) \cdot P_{bck}$

$$P(E_{\mu}, \Delta \Omega_{disk} / signal) = P_{signal}^{angle}(\Delta \Omega_{disk}, \theta_{x}, \varphi_{y}) \cdot P_{signal}^{energy}(E_{m}, \theta_{m}; \gamma)$$

$$P(E_{\mu}, \Delta \Omega_{disk} / bck) = P_{bck}^{angle}(\Delta \Omega_{disk}, \theta_{x}, \varphi_{y}) \cdot P_{bck}^{energy}(E_{m}, \theta_{m}) = \frac{1}{\Delta \Omega_{disk}} \cdot P_{atmospheric}^{energy}(E_{m}, \theta_{m})$$

Energy and Angular distributions

Reconstructed Energy Distributions for Signal (E⁻² spectrum) and Atm. Neutrino Background

Where $s_x\,s_y$ incorporate the uncertainty of the angle between the v- μ

Likelihood estimations

$$L(\boldsymbol{\gamma}, \boldsymbol{N}_{s}) = \prod_{i=1}^{N_{total}} P_{i}(\boldsymbol{\theta}_{x}, \boldsymbol{\phi}_{y}, \boldsymbol{E}_{m}, \boldsymbol{\theta}_{m}; \boldsymbol{\gamma}, \boldsymbol{N}_{s})$$

Point source d=-60^o and R_{max} =0.6^o Detector: 308 Towers-180m distance True Values: 15 Signal Events on top of 15 background events with γ =2

Estimated Signal events

Discovery potential determination

$$\begin{split} P_{signal}\left(\theta_{x},\phi_{y},E_{m},\theta_{m};\gamma\right) &= P_{signal}^{angle}(\theta_{x},\phi_{y}) \cdot P_{signal}^{energy}(E_{m},\theta_{m};\gamma) \\ P_{bck} &= P_{bck}^{angle}(\theta_{x},\phi_{y}) \cdot P_{bck}^{energy}(E_{m},\theta_{m}) \\ P_{i}\left(\theta_{x},\phi_{y},E_{m},\theta_{m};\gamma,N_{s}\right) &= \frac{N_{s}}{N_{total}} \cdot P_{signal}\left(\theta_{x},\phi_{y},E_{m},\theta_{m};\gamma\right) + \left(1 - \frac{N_{s}}{N_{total}}\right) P_{bck}\left(\theta_{x},\phi_{y},E_{m},\theta_{m}\right) \end{split}$$

$$L(\gamma, N_s) = \frac{\left(m_B\right)^{\left(N_{total} - N_s\right)} e^{-m_B}}{\left(N_{total} - N_s\right)!} \cdot \prod_{i=1}^{N_{total}} P_i\left(\theta_x, \phi_y, E_m, \theta_m; \gamma, N_s\right)$$

Two hypotheses:

- the data sample is only background (null hypothesis)
- •The data sample contains signal events (discovery)

$$\lambda = -2 \cdot \ln \frac{L_0 \left(N_s = 0 \right)}{L \left(\gamma = 2, N_s \right)}$$

Distribution of λ and Discovery probability

Distribution of λ when N signal events are present on top of background

Fraction of events with λ greater than a λ value

Discovery probability and integrated flux

If r is the mean number of expected signal from a source then we expect 0, 1, 2, 3, 4,... tracks to be observed with probabilities according to the Poissonian probability function P(n;r).

Consequently, the Discovery Potential for r expected signal tracks is the convolution of the discovery probabilities for certain number of tracks with the corresponding Poissonian probabilities for mean equals to r

Modeling the Spatial Distribution of the Sources

Flat disk treatment

$$P_{signal}^{angle}(\theta_x, \phi_y) \rightarrow P_{signal}^{angle}\left(\left(\frac{R_m}{d}\right)^2, \cos\theta_t\right)$$

$$P_{symut}^{angle}(\theta_{x},\phi_{y}) \rightarrow P_{symut}^{angle}\left(\left(\frac{R_{m}}{d}\right)^{2},\cos\theta_{t}\right)$$

 $(R_m/d)^2$

Detector Geometrical Layout

Strings: 616 strings with 100m inter string distance. Each string comprise 20 Multi PMTs, 40 m apart.

Detectors Footprint

RXJ1713

Simulate the v emission to follow the (raw) VHE gamma emission topology (just a toy model)

3D angular distribution of the reconstructed (v) signal induced muons

RXJ1713

Each bin of the source-model contributes as

$$P_{signal-bin}^{angle}(\theta_{x},\phi_{y}) = \frac{1}{1-e^{-\frac{R_{\max}^{2}}{s_{x}^{2}+s_{y}^{2}}}} \frac{1}{2\pi\sigma_{x}\sigma_{y}} \iint_{\Delta} e^{-\frac{1}{2}\left(\frac{(\theta_{x}-\theta_{t})^{2}}{s_{x}^{2}}+\frac{(\phi_{y}-\phi_{t})^{2}}{s_{y}^{2}}\right)} \frac{1}{\pi d^{2}} d\theta_{x} d\phi_{y}$$

$$P_{signal}(\theta_x, \phi_y, E) = \Pi(E) \cdot \sum_{i=1}^{101} w_i \cdot P_{signal-bin-i}^{angle}(\theta_x, \phi_y)$$
$$P_{total}(\theta_x, \phi_y, E) = \frac{n_s}{N} P_{signal} + \left(1 - \frac{n_s}{N}\right) P_{back}$$

RXJ1713

1% improvement in DP. 50% for 5 σ discovery : 5.6 ys \rightarrow 5.55 ys

DISCOVERY POTENTIAL OF KM3NET FOR THE SNR VELA X

R. Coniglione, P. Sapienza and A. Trovato

Neutrino spectra

	N (GeV ⁻¹ s ⁻¹ cm ⁻²)	Г	E _{cut} (TeV)	$\Phi_{ m >1 TeV}$ (s ⁻¹ cm ⁻²)
RXJ1713 Kelner (Ref.1)*	1.68 10-14	1.72	2.1	6.62 10 ⁻¹²
RXJ1713 Vissani** (Ref. 2)	8.35 10-15	2.04	13.1	6.12 10-12
VelaX 2006 Vissani** (Ref. 2)	0.60 10-14	1.45	7.22	5.76 10 ⁻¹²
VelaX 2012 total Vissani** (Ref. 2)	0.93 10-14	1.32	8	10.3 10-11
VelaX 2012 inner Vissani** (Ref. 2)	0.72 10-14	1.36	7	7.36 10-11

Ref. 1 - S.R. Kelner et al. Phys. Rev. D 74 034018 (2006)
Ref. 2 - From gamma to neutrino spectra following Vissani prescription
F.L.Villante and F.Vissani, Phys. Rev. D 78 (2008) 103007;
F. Vissani and F.L. Villante, Nucl. Inst. Meth. A588 (2008) 123;
F. Vissani, Astropart. Phys. 26 (2006) 310

$$*\frac{dN}{dE_{\gamma}} = N \cdot E_{\gamma}^{-\Gamma} \cdot \exp(-sqrt(E_{\gamma}/E_{cut})) \qquad **\frac{dN}{dE_{\gamma}} = N \cdot E_{\gamma}^{-\Gamma} \cdot \exp(-E_{\gamma}/E_{cut})$$

Vela X

Source	Size (degrees) *	Flux(TeV ⁻¹ cm ⁻² s ⁻¹), E in TeV
Vela X (total)	Radius = 1.2°	0.93*10 ⁻¹¹ *(E ^{-1.32})*exp(-(E/8.))
Vela X (inner part)	Radius = 0.8°	0.72*10 ⁻¹¹ *(E ^{-1.36})*exp(-(E/7.))

Signal: 7.31/yr Background: 11.10/yr Extra ring: 0.3⁰

Signal: 4.73/yr Background: 5.96/yr Extra ring: 0.3⁰

Discovery Potential using the direction of the galactic source

A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source

UMENT

Discovery Potential using the direction of the galactic source

Source	Size (degrees) *	Flux(TeV ⁻¹ cm ⁻² s ⁻¹), E in TeV
RXJ1713.7-3496	Radius = 0.65°	1.68*10 ⁻¹¹ *(E ^{-1.72})*exp(-sqrt(E/2.1))

Discovery Potential using the direction of the galactic source

Source	Size (degrees) *	Flux(TeV ⁻¹ cm ⁻² s ⁻¹), E in TeV
Vela X (total)	Radius = 1.2°	0.93*10 ⁻¹¹ *(E ^{-1.32})*exp(-(E/8.))

