

Instrumentation for Optical Calibration: Laser Beacon and Nanobeacon

Diego Real IFIC (CSIC – Universidad de Valencia)

Marseille 29 January 2013

OUTLINE

THE OPTICAL CALIBRATION PROPOSAL

INTRA D.U CALIBRATION: NANOBEACON

INTER D.U. CALIBRATION: LASER BEACON

NANOBEACON

PPM

NEMO TOWER PHASE II

LASER BEACON

IL11 ANTARES

NEMO TOWER PHASE II

KM3NeT LASER BEACON: THE IFIC PROPOSAL

FINAL SUMMARY

TIME CALIBRATION SYSTEM

Decoupling inter-intra D.U. Calibration systems INTRA D.U. Calibration:

Nano-Beacon Upward single LED housed inside all DOMs

- Less expensive and high redundancy
- Can be triggered internally to avoid electronic noise
- Frequency of several kHz depending on the DAQ system (300 Hz @ ANTARES)
- Avoid cumbersome synchronization process, only one LED

TIME CALIBRATION SYSTEM

Decoupling inter-intra D.U. Calibration systems INTRA D.U. Calibration:

Nano-Beacon Upward single LED housed inside all DOMs

- Less expensive and high redundancy
- Can be triggered internally to avoid electronic noise
- Frequency of several kHz depending on the DAQ system (300 Hz @ ANTARES)
- Avoid cumbersome synchronization process, only one LED

INTER D.U. Calibration:

Laser Beacons @ 532 nm

- Higher in intensity and shorter pulses < 1 ns
- No synchronization needed
- More expensive but less redundancy required
- Tunable by Liquid Crystal Optical attenuator
- Collimated beam -> Diffusion device needed

KM3NeT Collaboration meeting, Marseille

29 January 2013

NANOBEACON

Consists of two boards:

Pulser NCB: Nanobeacon Control Board

Nanobeacon Control Board:

Selects the intensity of flashing Selects the trigger (external or auto-trigger) Selects the frequency of the internal trigger

Pulser:

Creates a short light pulse Intensity set by the voltage generated by the NCB

Frequency set by the trigger generated at the NCB or by the external trigger

NANOBEACON STATUS - PPM

- One Nanobeacon already integrated on the PPM DOM
- Three already produced and ready for integration at the PPM DU (@470 nm)

NANOBEACON STATUS – PPM D.U

The Nanobeacon will be included in 3 of the DOM allocated in the active storeys of the PPM DU

FWHM angular distribution ~ 15 °

NANOBEACON STATUS – NEMO TOWER PHASE II

8 upwards-orientated LED Nanobeacons of different wavelengths have been integrated

- 4 LEDs of 470 nm have been mounted on the first two floors from the bottom
- 2 LEDs of 440 nm on the third floor
- and 2 LEDs of 400 nm on the fourth floor

KM3NeT Collaboration meetin 29 January 2013

LASER BEACON

≭LASER BEACON +Titanium Container +Voltage-controlled attenuator +LASER head +Anti-Biofuling System +Connector +Slow Control Interface +Photodiode Signal

9

LASER BEACON DEVELOPMENTS

- 1 laser beacon integrated in the ANTARES IL11
- 1 laser beacon integrated in the KM3NeT "Nemo Tower Phase II"

Both use a 3.5 uJ laser head from Teemphotonics

Parameter	Value
Pulse width (ns)	400
Energy / Pulse (µJ)	3.5
Peak Power (kW)	10
Repetition rate (kHz)	
Average Power (mW)	-
	E

TABLE I LASER PROPERTIES

Twice more powerful than the ANTARES Laser Beacons

LASER BEACON: NEMO TOWER PHASE II

LASER BEACON: NEMO TOWER PHASE II

New laser head. More powerful 25 uJ per pulse versus 3.5 uJ of previous head. @532 nm New power supply and control needed

Model	PNP- B06010	PNP- B08010	PNG-
Energy/Pulse (μJ)	70	90	25
Pulse Width (ps)	400	400	300
Peak Power (kW)	175	220	80
Repetition rate (Hz)	1,000	1,000	1,000
Average Power (mW)	70	90	25

KM3NeT Collaboration meeting, Marseille

29 January 2013

The connector to use in the KM3NeT laser beacon has to be chosen. Our proposal: Use the same connector as in the ANTARES IL11

A titanium connector from the company **MacArtney** is used to input and output the laser required signals

Wiring diagram

Wires	Description	Colour	Function
0 1 10		Grey	CLK signal
9 and 10	CLOCK	Black	Ground
4 d 5		White	SDA
4 and 5	1 ² C wires	Black	SDL
11 1 12	PD signal	Green	Read out signal
11 and 12	(readout)	Black	Ground
(White	+ 48 V
o and /	Power supply	Black	Ground
2 and 3	NOT USED	Blue	NOT USED
1 and 8	Shielding	Black	NOT USED

The power supply to the laser beacon has to be chosen. Our proposal: Use 48 Volts @ 2 Amps (~ 100 Watts)

A titanium connector from the company MacArtney is used to input and output the laser required signals

Wiring diagram

Wires	Description	Colour	Function
	Grey	CLK signal	
9 and 10	CLUCK	Black	Ground
4	I ² C wires	White	SDA
4 and 5		Black	SDL
PD signal	PD signal	Green	Read out signal
11 and 12	(readout)	Black	Ground
Cord 7 Down gungly	White	+ 48 V	
o and 7	rower supply	Black	Ground
2 and 3	NOT USED	Blue	NOT USED
1 and 8	Shielding	Black	NOT USED

The communications with the laser beacon has to be chosen. Our proposal: Use I2C

A titanium connector from the company MacArtney is used to input and output the laser required signals

Wiring diagram

Wires	Description	Colour	Function
	CLOCK	Grey	CLK signal
9 and 10		Black	Ground
	White	SDA	
4 and 5	12C wires	Black	SDL
PD signal	PD signal	Green	Read out signal
11 and 12	(readout)	Black	Ground
Cand 7 Demonstra	Dermon group les	White	+ 48 V
o and 7	Power supply	Black	Ground
2 and 3	NOT USED ANOT	Blaboration meeting, Ma	NOT USED
1 and 8	Shielding	Black	NOT USED

Face view

SUMMARY

- <u>**1 Nanobeacon**</u> integrated on the PPM DOM
- <u>3 Nanobeacons</u> already produced and ready for integration in the PPM DU DOMs
- <u>8 upwards-orientated LED Nanobeacons</u> of different wavelengths (@ 470-440-400 nm) have been integrated in "Nemo Tower Phase II"
- <u>**1 laser beacon**</u> integrated in the ANTARES IL11 (3.5 µJ)
- <u>**1 laser beacon**</u> integrated in "Nemo Tower Phase II" (3.5 µJ)
- Proposal to use a new laser head. More powerful with 25 µJ per pulse
 Before star the development of the electronics it has to be chosen:
 - o <u>Connector</u>
 - o **Power Supply**
 - Communications KM3Ner Collaboration meeting, Marseille 29 January 2013

TIME CALIBRATION PROPOSAL

THANKS FOR YOUR ATTENTION!

THE ANTARES SYSTEM

47 LED OPTICAL BEACONS:

- **4 LOB** per Line (**472 nm)** located every 90 m along the line.
- LEDs cleaved for widening angular distribution
- Successful **Intraline** calibration along the line.
- **Interline** calibration cumbersome due to line movements and rotation.

2 Laser BEACONS:

- At bottom of central lines (532 nm)
- Interline calibration
- Positioning crosscheck
- Possibility of calibrating first storeys