

Progress report on low energy neutrino studies with the ORCA detector

Apostolos G. Tsirigotis

Physics Laboratory Hellenic Open University

Ευρωπαϊκή Ένωση

KM3NeT Collaboration meeting, January 2013 CPPM

Simulation software chain

Neutrino generation

- Genie neutrino generator (complete composition of sea water and crust taken into account)
- 1-100 GeV Bartol flux (solar minimum)
- 400m disc diameter ${\scriptstyle \bullet}\,$ Semi-contained $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ events in the detector instrumented volume for this study 140m detector diameter 300m above the highest OM 300m 114m detector height 100m above the sea bed Sea bed

- Any detector geometry can be described in a very effective way (GDML input)
- All the relevant physics processes are included in the simulation

Full GEANT4 simulation

SLOW

Fast Simulation

2 to several thousand times faster than full Simulation (depended on neutrino energy)

Parametrizations for:

- EM showers (from e-, e+, γ)
- HA showers (from long lived hadrons)
- Low energy electrons (from ionization)
- Direct Cherenkov photons (from muon)

Each parametrization describes the number and time profile of photons arriving on a PMT in bins of: Shower energy (E) (EM and HA showers) PMT position (D, θ) relative to shower vertex/muon position, PMT orientation (θ_{pmt}, ϕ_{pmt})

Multi-PMT direction Likelihood

 PDFs of the angle, θ, between the Ch wavefront direction and the active direction of the Multi-PMT

 $PDF_{d,s}(\theta; n)$

•Separate parametrization for n=1,2,...18 active small pmts.

•For the parametrization only the angular acceptance and the directions of the small PMTs in the OM are used.

Signal $PDF_{d,s,i}(\theta_i; n_i)$ Noise $PDF_{d,n}$ =constant

The directionality PDFs are used in the formation of the Likelihood value for each candidate muon track.

•i=1,2,...N the active Multi-PMTs •n_i=the number of active elements in the ith Multi-PMT • θ_i =the angle between the average direction of the ith active Multi-PMT with the reconstructed muon's Cherenkov wavefront

Also the timing likelihood is used

Signal $PDF_{t,s,i}(t_i - t_{exp}; n_i, d_i)$ Noise $PDF_{t,n,i} = constant$

 t_i : hit arrival time, t_{exp} :expected arrival time of direct photon d_i : Hit distance from track

•For each candidate track form the direction*timing likelihood value.

$$L_{total} = \prod \left[p_{n,i}(N_{hit}, n_i) PDF_{t,n,i} PDF_{d,n} + (1 - p_n(N_{hit}, n_i)) PDF_{t,s,i} PDF_{d,s,i} \right]$$

 $p_{n,i}(N_{hit}, n_i) \equiv$ Probability of the ith hit to be noise

Timing PDFsSignal
$$PDF_{t,s,i}(t_i - t_{exp}; n_i, d_i)$$
Noise $PDF_{t,n,i}(t_i - t_{exp}; d_i)$

Direction PDFs Signal
$$PDF_{d,s,i}(\theta_i; n_i)$$

Noise $PDF_{d,n} = constant$

•The candidate track with the largest Likelihood value is chosen

Optical noise filtering, prefit and muon reconstruction

- Prefit using only L1 hits (~1 per event expected from ⁴⁰K noise):
 - Linear prefit estimates the pseudo-vertex position with ~10m accuracy
 - Likelihood prefit
 - Scan the parameter space (pseudo-vertex, θ, φ) with steps (5m, 6°, 6°) up to a maximum (20m, 180°, 360°) around the linear prefit estimation
 - Reject L0 hits with residuals>20ns with respect to the prefit track

Muon track reconstruction algorithms

- Combination of χ^2 fit and Kalman Filter is used to produce many candidate tracks
- The best candidate is chosen using the Multi-PMT Direction and arrival time Likelihood (track quality criterion)
- Muon energy reconstruction using the estimated muon track length (see below)

Studied ORCA detector configuration

50 Strings, ~20m spaced 20 DOMs per string, 6m spaced 1,75 Mt instrumented volume

First results

Reconstruction efficiency as a function of neutrino energy

- Events originating from inside the instrumented volume (semi – contained events)
- Events with at least 4 signal L1s
- No quality cuts after reconstruction.
- At 6 GeV a reconstruction efficiency of 70% is achieved

Angular resolution as a function of neutrino energy for semi-contained events.

 Median angular resolution (black line) is below 15° for energies above 6 GeV.

Neutrino Energy (GeV)

Muon track length estimation and energy reconstruction

Estimation of the neutrino interaction vertex

- Projections (with the Cherenkov angle) of the hit positions on the fitted track
- Accept only hits with residual<10ns and distance<40m from fitted track, reducing the ⁴⁰K noise contribution to a few per event (from an initial of ~130)
- From the first hits projection estimate the neutrino vertex
- The last hit define the track end

Muon track length estimation and energy reconstruction

Contained events with MC true muon track length>20m (~5GeV muon energy)

Muon track length resolution

Muon energy estimation resolution \Rightarrow for fully contained events

Neutrino energy reconstruction (global fit)

Event re-weighting taking into account oscillation probabilities for Normal or Invert Hierarchy

Earth density profile Preliminary Reference Earth Model

Event re-weighting taking into account oscillation probabilities for Normal or Invert Hierarchy

Atmospheric neutrino flux (with oscillations)

Atmospheric neutrino flux (no oscillations)

$$\Phi_{\mu}(E,\theta) = P(E,\theta;v_{\mu} \rightarrow v_{\mu}) * F_{\mu}(E,\theta) + P(E,\theta;v_{e} \rightarrow v_{\mu}) * F_{e}(E,\theta)$$

Event selection (identification of muon neutrino events)

MC true direction

Event selection (identification of muon neutrino events)

Time profile – Example 2

Conclusions & Outlook

- Generation (Genie genhen) & simulation is well established
- Track reconstruction gives promising results
 - Can be further improved
- Muon energy reconstruction resolution of ~2.5GeV can be achieved
- Neutrino energy reconstuction is under way
- Background contamination: need veto for atmospheric muons
- Distinguish between muon and electron/tau neutrino events
 - Can we separate low energy muon from electron/tau events in the presence of the ⁴⁰K noise?
 - How much the number of years needed to measure hierarchy will change if there is x% uncertainty of an event to be v_{μ} ?

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: "THALIS - HOU - Development and Applications of Novel Instrumentation and Experimental Methods in Astroparticle Physics"

Backup slides

Angular resolution as a function of neutrino energy for contained events.

Angular difference neutrino-fit is better than neutrino-muon

- for high energy neutrinos the contained events (low energy muons) have large kinematics angle
- Fit algorithm uses the light from all particles from neutrino interaction