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Simulation software chain

[ Neutrino generator }
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Geant4 simulation
All secondary particles are tracked
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[ OM response simulation & ]
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[ Muon Track reconstruction }
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E Neutrino generation }

@ Genie neutrino generator (complete
composition of sea water and crust taken into

account)

@ 1-100 GeV Bartol flux (solar minimum)

a Semi-contained v, events in the detector

instrumented volume for this study

300m above the highest OM

100m above the sea bed }

-8

Sea bed

400m disc diameter
140m detector
dlameter '

114m detector height



* Any detector geometry can be described in a very effective way (GDML input)

* All the relevant physics processes are included in the simulation

Full GEANT4 simulation




Muon Track reconstruction Multi-PMT direction Likelihood
(infinite track)

°PDFs of the angle, 0, between the Ch

wavefront direction and the active direction _
of the Multi-PMT Candidate Muon Track

PDF, (0;n)

31 3" PMTs
inside a 17”

eSeparate parametrization for n=1,2,...18
active small pmts.

oFor the parametrization only the angular
acceptance and the directions of the small
PMTs in the OM are used.
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Muon Track reconstruction The directionality PDFs are used in the formation of
(infinite track) the Likelihood value for each candidate muon track.

: . *i=1,2,...N the active Multi-PMTs
Signal PDFd,S,i<9i’ ni) -n=the number of active elements in the i Multi-PMT

_ 0= — o .
Noise ~PDF, =constant Qi the angle between the average direction of the i active Multi-PMT
’ with the reconstructed muon's Cherenkov wavefront

Also the timing likelihood is used

Signal PDFt . i(ti_texp;ni’di) t: hit arrival time,
o t...-expected arrival time of direct photon
Noise ~ PDF, =constant d. : Hit distance from track
LO (n=1) L1 (n=3)
104 ! 2
: OM distance from track : § OM distance from track :
50m, 100m, 140m - 50m, 100m, 140m
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Muon Track reconstruction
(infinite track)

aFor each candidate track form the direction*timing likelihood value.

Ltotal:H[pn,i<Nhit)ni)PDFt,n,iPDFd,n+(]-_pn(Nhit:ni))PDFt,s,iPDFd,s,i]

P, ;(N,.,n;)= Probability of the i hit to be noise

n;,d,)

Signal PDFt,S,i(ti—texp,
d;)

Timing PDFs
Noise ~PDF, , .(t,—t

exp’

Signal  PDF, .(6;; n,)

Noise  PDF,  =constant

Direction PDFs

@The candidate track with the largest Likelihood value is chosen



Muon Track reconstruction Optical noise filtering, prefit and
(infinite track) muon reconstruction

*Prefit using only L1 hits (~1 per event expected from “°K noise):
@ Linear prefit estimates the pseudo-vertex position with ~10m accuracy
@ Likelihood prefit
@ Scan the parameter space (pseudo-vertex, 8, @) with steps (5m, 6°, 6°) up to a
maximum (20m, 180°, 360°) around the linear prefit estimation
@ Reject LO hits with residuals>20ns with respect to the prefit track

*Muon track reconstruction algorithms
@ Combination of x? fit and Kalman Filter is used to produce many
candidate tracks

@ The best candidate is chosen using the Multi-PMT Direction and arrival
time Likelihood (track quality criterion)

@ Muon energy reconstruction using the estimated muon track length (see
below)



Studied ORCA detector configuration

50 Strings, ~20m spaced
20 DOMs per string, 6m spaced
1,75 Mt instrumented volume

Detector footprint
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| contents reco_eff |

[ Muon Track reconstruction }

(infinite track) B = bt L b R
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Muon track length estimation and Estimation of the neutrino interaction vertex
energy reconstruction

@ Projections (with the Cherenkov angle) of the hit positions on the fitted track

@ Accept only hits with residual<10ns and distance<40m from fitted track,
reducing the “°K noise contribution to a few per event (from an initial of ~130)

@ From the first hits projection estimate the neutrino vertex

@ The last hit define the track end

htemp
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Muon track length estimation and
energy reconstruction

Contained events with MC true
muon track length>20m
(~5GeV muon energy)

Muon track length resolution =)
For fully contained events

v

Muon energy estimation resolution =)
for fully contained events

Neutrino energy reconstruction
(global fit)
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Event re-weighting Earth density profile

f[akl_ng ITIED EIECe. Preliminary Reference Earth Model
oscillation probabilities for

Normal or Invert Hierarchy
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Event re-weighting taking into account
oscillation probabilities for Normal or Invert Hierarchy

Atmospheric neutrino flux
(with oscillations)

probakility

cos{g) = 0.8

cos(d) = -0.6

E, (GeV)

Atmospheric neutrino flux
(no oscillations)
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- Eventselection (denification of muon neutrino events) .,

direction

How much different are Vv, from v, events In the

relevant energy region for Mass Hierarchy |
measurement? (under study) hits

Time profile
-Projection forward with angle 90-0_
-Hits emitted with 6_are along a straight line

*
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Time profile — Example 2

v“event
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Conclusions & OQOutlook

@ Generation (Genie — genhen) & simulation is well established

@ Track reconstruction gives promising results
@ Can be further improved

@ Muon energy reconstruction resolution of ~2.5GeV can be achieved

@ Neutrino energy reconstuction is under way

@ Background contamination: need veto for atmospheric muons

@ Distinguish between muon and electron/tau neutrino events
@ Can we separate low energy muon from electron/tau events in the
presence of the “°K noise?
» How much the number of years needed to measure hierarchy will change
If there is x% uncertainty of an event to be v, ?

This research has been co-financed by the European Union (European Social Fund
— ESF) and Greek national funds through the Operational Program "Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program: “THALIS - HOU - Development and Applications of
Novel Instrumentation and Experimental Methods in Astroparticle Physics”
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Muon Track reconstruction
(infinite track)

Angular resolution as a function of
neutrino energy for contained events.
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Angular difference neutrino-fit is better than neutrino-muon
@ for high energy neutrinos the contained events (low energy muons) have
large kinematics angle
@ Fit algorithm uses the light from all particles from neutrino interaction
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