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Overview

development of the new statistical approach
— 2 unbinned likelihood for hierarchies

— 2 figures of merit of the experiment:
e p-value
 false positive fraction

Minimal exposure for the discovery calculation
Testing impact of the model uncertainties

— neutrino fluxes
— oscillation parameters

Testing impact of the detector performance

We were concentrated on muons only (no shower
reconstruction was assumed).



Method

* True hypothesis. Simulations for a given set of
parameters -> test experiments.

 Model hypothesis to calculate unbinned
likelihood:

(e )
L;= prdt (E;, 6;)

72..
1=1

e Two likelihoods — for IH model and NH model

* Teststatistic 7 = log(Lm/LNn)



Test statistic distributions
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The Gaussianity was demonstrated with dedicated high statistic
tests.

Choose sigma for C.L. (30, 50).
p-value at given C.L. is a fraction of experiments corresponding to

Ni(n) - t=NH, IH

NnNu(n) + Na(n) a(o)




Toy MC

e fast MC tool for mass simulations of the
detected events (E,0,)

* events (E;,0) are used

— to create pdf(E,0) for the two model hypothesis
(IH,NH)

— to calculate test statistics for the test experiments

— 1000 test experiments to plot distributions and
calculate p-value



Toy MC scheme

* Simulations is just a fishing from
some pre-generated matrixes.

e Basic ingredients
— flux model

— propagator: neutrino oscillation
parameters, Earth profile, neutrino
cross-sections

— detector performance
The performance should be
parameterized (energy resolution,
angular resolution, effective mass)



. Baseline atmospheric neutrino flux: HONDA et al.(PRD
2005).
2D matrix (E,cosB)

. PREM. 1000 steps for each baseline(B). Oscillation
probabilities calculated for fixed values of cos(0)
ranging from 0 to 1 with 0.02 step (1D matrix).

. Cross sections from GloBES. (E, cos®) matrixes with
expected number of nu+anu events using (1)&(2) and
assuming 1Mt effective mass.

Neutrino muon kinematics simulated with GENIE. 2
distributions

E (E,) and B(E,). Random fishing from them.

. So far track/energy reconstruction of the muons only.
Final matrixes for the muons 5 GeV — 40 GeV
(reasonable energy and track reconstruction, well
known cross-sections).



Reference oscillation parameters.

NH: m; < mo < ma, with Am3, = dm? and Am2, ~ Am3, = Am?
g < mp < mo, with Am2, = dm? and Am2, ~ Am?2, = Am’
IH <<4thA§102dA§3Af3A2
assuming this formalism, the values of Am?;;,  sm2, = Am%,(NH) — |AmZ, (IH)]
are different for IH, NH both from theoretical — 2Am2,(cos® 612 — cos S p sin B3 5in 20, tan faz)

and experimental view shift is not constrained
(CP is not known)
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Parameter Value

Am3, [1] (7.5810-22)x 10> eV?
Am3,(NH) [46] (2.45 & 0.09)x10~3 eV?
Am3, (TH) 0.13x1073 eV?% - Am3,(NH)

sin?(2612) [1]  0.849 F0055
sin?(2613) [47]  0.096 + 0.013
sin®(2023) [1]  0.974%505




[Mt x year at 40 GeV]
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ldeal detector exposure.

Perfect muon energy/track reconstruction

No biases on parameters

Exposure normalized to 1 Mt x year at 40 GeV

optimal
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the minimal required effective exposure is
60 Mt x year (p—value threshold at 0.5at5 C.L.)

170 Mt x year was chosen for the analysis

1 <~
Effective Exposure [Mt x years at 40 GeV]



Systematic effects study.

e If the true hypothesis is different from the model hypothesis (there
is a bias) the n distributions changes (basically shifts).

— p-value decreases
— an area of false positives appears.
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Atmospherlc flux uncertainty.
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Fluxes from atmflux_new studied:

Honda 1995
FLUKA 2002
Bartol 1995

New fluxes exist (3D calculations,
etc.). But the main uncertainties:
interaction of CR with light nuclei
and CR flux measurements remains
unchanged introducing ~20%
uncertainty.

FLUKA and Honda are ~20%
different in the normalization.

The shape differences ~5%



arbitrary unit

Atmospherlc ﬂux models
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* Bartol-Honda p=0.851at5o0
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Normalize the flux to the
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b N oscillations?

normalization error [%]



* if normalization still has uncertainty > 2%

arbitrary unit

(€EP17) 1.
Lj = — == x [ [ pat;(E:, 6:)
) i=1

non-extended likelihood extended likelihood
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Earth density profile.

F —— PREM profile model
41— Flat density model
2

+50 km shifted model
......... - + 10% density model
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50 km limit shift — no impact

assumption of the flat density profile — no
impact (p=0.999 at 3 o)

reducing the overall density by 10% - p=0.996
density is increased by 10% - p=0.872

varying the overall density factor by 1% - no
effect

* introduced biases are larger than the known
uncertainties or even unphysical



Neutrino oscillation parameters

e each oscillation parameter value is biased in the true
hypothesis, by +1 o from the central value while
keeping unaltered the model hypothesis.

* biasing Ami(NH) - |am3 (1H)|  simultaneously with other
parameters have minor impact (maximum variation
+8% for biasing together with Am?2,, for 34 Mt x year)

e almost no impact while biasing solar parameters (bias
on 8,, and Am?, has maximum spread of 0.1% at3 o
level). No degradation in combination with Am?,,



Reactor sector.
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Reactor sector.

2
M3,

* fraction of false
positives at 3 o C.L.
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CP phase.
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Detector performance.
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Detector performance.
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Conclusions

Minimum required exposure was found to be 60 Mt x year at 40 GeV
(for a 50% discrimination probability at 5 o)
This number can be significantly reduced by
— improving the detection efficiency in the 5-10 GeV muon energy region
— going down below 1 GeV has less impact and hard to achieve
Minor uncertainties impact
— Earth density
— Atmospheric fluxes shape
— CP phase
— shift between m?;;(NH) and m?,,(IH)
— 0,,and m?,,
Overall normalization of atmospheric flux is critical
— anchoring the flux at high energies
— using non extended liklihood

An important dependence of the NMH determination on the values of
0.3, 0,3 and m?,, .



More.

* The software written for this work is a great tool
for evaluating detector performance.
* |t maybe used for:

— Detector configuration optimization.
* Realistic energy and track reconstruction
* Effective mass performance for ORCA

— Reconstruction software evaluation.
* Modification of software is possible for:

— including the shower reconstruction
— fit oscillation parameters
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