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Electromagnetic Shower Reconstruction Algorithm

Principle of the shower reconstruction

1 The shower initiation with reconstructed tracks
2 The shower reconstruction : connecting basetracks from a film to the next one

based on geometrical criteria.

Summary of selections in the basetrack collection process

Values of the selections

abs(xbtk − xinit) ≤ 1250. AND abs(ybtk − yinit ) ≤ 1250.
abs(θX ) < 0.5 rd AND abs(θY ) < 0.5 rd

abs(θ3D
btk − θ3D

init) < 0.150 rd
abs(rbtk − rinit) < 0.150µm
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Electromagnetic Shower Reconstruction Algorithm

Outline of Identification and Energy Estimation

Once showers are reconstructed, some parameters relevant for electron identification
and energy estimation are extracted and used to feed an Artificial Neural Network
(ANN) for both purposes.

Description of the variables
Typical value

for electrons at
4 GeV

Typical value
for pions at 4

GeV

Multiplicity of basetracks in the shower 21.3 ± 1.8 12.8 ± 0.2
The mean value of the angular difference

between an initiator and one basetrack in the
shower distribution

35.9 ± 0.2
mrad

3.97 ± 0.01
mrad

The RMS value of the angular difference between
an initiator and one basetrack in the shower

distribution

24.9 ± 0.1
mrad

2.87 ± 0.01
mrad

The mean value of the position difference
between an initiator and one basetrack in the

shower distribution
40.1 ± 0.2 µm 10.64 ±

0.03 µm

The RMS value of the position difference
between an initiator and one basetrack in the

shower distribution
27.1 ± 0.1 µm

7.93 ±

0.03 µm

The content of each bin of the shower longitudinal
profile i.e. the number of basetracks per film. - -
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Electromagnetic Shower Reconstruction Algorithm

Reconstruction process

Each MC event is processed through the reconstruction chain :

Muon identification : OpCarac

Brick finding

CS simulation

Scanback procedure

Totalscan : MT linking, films alignment, BT linking, Vertexing

Shower reconstruction applied to all reconstructed tracks in the Totalscan volume

Shower selection

Each event will contain several reconstructed showers, one has to select the most
probable electron shower

Select only showers identified by the ANN as electron. (eProb1==1)

Among those selected above, keep the most upstream showers.

Among those selected above, the shower with the largest number of BT.
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Electromagnetic Shower Reconstruction Algorithm

Recent upgrades of the shower algorithm

Shower algorithm implementation in OpEmuRec has been debugged and comes to
modifications committed to fedra SVN as well as OpEmuRec CVS :

Thickness of plates in the OpEmuRec MC was different from the one used in the
shower algo

Bug in the number of plates used to extract shower profiles for events spanned
over 45 plates and more

Static arrays not sufficient to store large BT multiplicity events (νe prompt)

Propagation of the MC true information related to basetrack to the output of the
shower algorithm

A documentation of the shower algorithm usage with OpEmuRec is available on the
CVS server.
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MC samples used in this study

Description of all MC samples.

Name Channel Statistics

MC_nue_1k
νe from the

beam
contamination

1000

MC_oscillated_nue_1k oscillated νe 1000

MC_taue_3k

oscillated ντ
with τ decay
in electronic

mode

3000

MC_numunc_3k
νµ NC

interactions 3000

MC_numucc_3k
νµ CC

interactions 3000

MC_electronPion_4GeV_1k
Mixture of

electrons and
pions

1000

MC_electronPion_2GeV_1k
Mixture of

electrons and
pions

1000

MC_electron_10k Electrons 10000
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Electron identification

The software framework is OpRelease 4.0.

Strategy to assess performance and efficiency of the identification.

Define a cut on the ANN output to identify electrons.

Assess identification performance with testbeam data and compare it with a
dedicated MC sample "testbeam-like".

Evaluate identification efficiency with MC simulations and estimate its systematic
uncertainty with 1000 νe events coming from the oscillation and 3000 ντ events
coming from the oscillation with the tau in its electronic decay.

Check the identification efficiency dependancies with the energy and the vertex
depth.
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Performance of electron identification

The ANN gives an output variable close to 1 for eletrons and to 0 for pions. An
appropriate cut on this value to ensure that less than 1% of the selected showers are
from pion contamination.

MC simulation NN output distribution for the pure electron sample using the full brick
information.

hist_output15
Entries  834
Mean   0.9701
RMS    0.1222
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hist_output15
Entries  834
Mean   0.9701
RMS    0.1222

Output of the electron-id ANN [MC electron FullBrick]

These distributions allow to define a cut on the ANN output at a value 0.78 beyond
which the shower is identified as an electron.

Electromagnetic showers reconstruction and analysis and neutrino oscillation study by electron detection F. Brunet 11/56



Electromagnetic Shower Reconstruction Algorithm Electron identification Energy estimation Neutrino rates calculation.

Performance of electron identification

OPERA bricks have been exposed in the summer 2011 at CERN to 2 and 4 GeV pion
enriched in electrons beam. These bricks have been then scanned in Bern thanks to
Tomoko, Ariga, Serhan and Annika and analysed in Bern thanks to Ariga.

Result of the electron testbeam data processing

E (GeV) "Beam" tracks
Expected
electrons Selected tracks

Electron tracks
confirmed

2 350 80 69 49
4 960 50 52 43

Performance of the algorithm by comparing testbeam data and MC testbeam-like

E (GeV) MC DATA
ǫe→e (%) ǫπ→e (%) ηe (%) Purity (%) κe(%)

2 60.2±4.5 0.0 86 ± 4 71 ± 5 61 ± 5
4 76±8 0.14 100 83 ± 5 86 ± 5

Table: Summary of the electron identification algorithm performance with
ǫα→β = Number of MC true β identified as α

Total number of MC true β
and ηα = Number of particle identified as α

Number of expected α particles . An estimation of

the purity of the "confirmed" electrons in data and of the κe = # of confirmed
# of expected has been checked

by visual inspection.
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Performance of electron identification

Performance of the algorithm by comparing testbeam data and MC testbeam-like

ANN output value
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Figure: Output variable of the identification ANN for testbeam data at 4 GeV on the right side [Ariga]
and for a MC sample testbeam-like on the left side showing ANN output value for MC true
electron in red and for MC true pion in black.
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Performance of electron identification

Performance of the algorithm by comparing testbeam data and MC testbeam-like
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Figure: Output variable of the identification ANN for testbeam data at 2 GeV on the right side [Ariga]
and for a MC sample testbeam-like on the left side showing ANN output value for MC true
electron in red and for MC true pion in black.
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Identification efficiency

Shower reconstruction and electron identification processes thus established are
applied to MC simulation of OPERA electron neutrino events, both from τ→e and from
the oscillation process νµ → νe. The identification efficiency has been evaluated as a
function of a variable number of films.

Identification efficiency of the νµ → νe oscillation sample used in the MC simulation
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Figure: Electron Identification efficiency as a function of the shower extension in terms of number of
films obtained with MC simulation of the νµ → νe oscillation channel on the left panel. The
same efficiency but only for MC true electron showers on the right panel. The difference
gives the systematic uncertainty on identification of showers.
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Identification efficiency

Identification purity of the νµ → νe oscillation sample used in the MC simulation
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Identification efficiency

Identification of electron showers with the MC true information in the νµ → νe
oscillation channel.
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Figure: Ratio of BT linked to a hit of the primary electron divided by the total number of BT in the
shower with all events in the left panel and with only showers which have an extension of 10
plates at maximum in the right panel. Both of these plots are obtained with MC simulation of
the νµ → νe oscillation channel. A cut to 0.5 is used to evaluate the misidentification of
electron showers.
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Identification efficiency

Identification efficiency of the νµ → ντ (τ → e) sample used in the MC simulation
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Figure: Electron Identification efficiency as a function of the shower extension in terms of number of
films obtained with MC simulation of the νµ → νe oscillation channel on the left panel. The
same efficiency but only for MC true electron showers on the right panel. The difference
gives the systematic uncertainty on identification of showers.
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Identification efficiency

Identification purity of the νµ → ντ (τ → e) sample used in the MC simulation
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Identification efficiency

Identification of electron showers with the MC true information in the νµ → ντ (τ → e)
channel.
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Figure: Ratio of BT linked to a hit of the primary electron divided by the total number of BT in the
shower with all events in the left panel and with only showers which have an extension of 10
plates at maximum in the right panel. Both of these plots are obtained with MC simulation of
the νµ → ντ (τ → e) channel. A cut to 0.5 is used to evaluate the misidentification of
electron showers.
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Identification efficiency dependancies

Identification efficiency dependancy with the energy in the νµ → νe oscillation channel.
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Figure: Electron identification efficiency as a function of the electron MC true energy in the right
panel and electron identification efficiency as a function of the MC true vertex depth in the
left panel, both obtained with MC simulation of the νµ → νe oscillation channel.
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Identification efficiency dependancies

Identification efficiency dependancy with the energy in the νµ → ντ (τ → e) channel.
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Figure: Electron identification efficiency as a function of the electron MC true energy in the right
panel and electron identification efficiency as a function of the MC true vertex depth in the
left panel, both obtained with the MC simulation for νµ → ντ oscillation channel with the τ
lepton reconstructed into its electron decay channel.

Electromagnetic showers reconstruction and analysis and neutrino oscillation study by electron detection F. Brunet 22/56



Electromagnetic Shower Reconstruction Algorithm Electron identification Energy estimation Neutrino rates calculation.

Performance and efficiency of electron identification

Summary of performance and efficiency of the shower algorithm in electron
identification :

10 plates are sufficient to reach an identification efficiency higher than 80%
whereas the use of 5 to 10 plates presents an important drop of the efficiency.

Using MC simulations, the identification effiency with 10 plates have been
estimated to 81 ± 9% for the νµ → νe oscillation channel with a purity of 78%.
Systematic uncertainty can be reduce to 4% by using all films available once the
electron has been identified.

Using MC simulations, the identification effiency with 10 plates have been
estimated to 87 ± 13% for the νµ → ντ (τ → e) channel with a purity of 71%.
Systematic uncertainty can be reduce to 7% by using all films available once the
electron has been identified.

Comparison of testbeam data with the MC sample "testbeam-like" shows the
difficulty to rely our MC since the instrumental background is missing.
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Energy estimation

The algorithm is based on the same ANN as for the identification algorithm.
However an important discrepancy is on the parameters of the basetrack selection.

Summary of selections specific to energy estimation algorithm in the basetrack
collection process.

Variables used for
the selections

Values of the selections

Angle difference
between the

basetrack and the
projection of the

initiator

abs(θ3D
btk − θ3D

init ) < 0.130 rd

The basetrack has
to be inside a cone
shown on the right
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Strategy to assess performance of the electron energy estimation.

Estimate the energy estimation with a MC simulation of single eletrons : 10000
electrons produced in an energy continuum from 0 to 30 GeV with a flat spectrum
and with incoming angles θx and θy in the range 0 to 0.6 rad.

The first step of the analysis has been to define a pure sample of electrons to
assess the best performance in energy estimation of this tool.

Calibration : we release these selections and define a correction to the energy
and finally a resolution is given for the OPERA calorimeter with ECC.

Compare testbeam data with MC simulation to estimate the systematic
uncertainty on the energy.

Check the energy estimation results with MC simulations : 1000 νe events coming
from the oscillation and 3000 ντ events coming from the oscillation with the tau in
its electronic decay.
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Performance of the energy estimation

Summary of selections to define a pure electron sample.

Variables used for
the selections Values of the selections

Incoming angle of
the electron abs(θ3D) < 0.1 rd

Contained shower
: multiplicity of

microtracks
At least 50% of microtracks inside one brick

Showers have been reconstructed over the full volume available for the event.
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Performance of the energy estimation
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Figure: On the left side a scatter plot of the reconstructed energy as a function of the MC true
energy. On the right side the fitted profile of the scatter plot shown on the left. The
parametrization showed on the profile gives : EREC = (0.92 ± 0.08) ∗ EMC . The error
quoted here is the error on the fit.

The reconstructed energy is well linear up to 20 GeV.
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Performance of the energy estimation

ratio =
EREC

EMC
residual =

EREC − EMC
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Figure: The gaussian fit of the energy ration gives σ(EREC/EMC) = 0.28 ± 0.01 ; for the residuals,
σ(∆E/E) = 0.29 ± 0.01 and the mean gaussian value is −0.08 ± 0.01.

The energy estimation on the pure sample can achieve a mean resolution of 29%.
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Performance of the energy estimation

Resolution on the shower energy as a function of the MC true energy.
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Calibration of the energy estimation
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The energy residuals are stable
with the vertex depth up to the
plate 40 ; the deviation above this
value is visible but not so important
up to plate 47.

The energy residuals vary strongly
with the shower axis angle which
implies a bias in the energy
estimation.

The shower extension has to be 20
plates at least to reach the stability
region in shower extension.
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Calibration of the energy estimation

The corrected energy of "contained" showers.
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The parametrization showed on the profile gives : EREC = (1.05 ± 0.17) ∗ EMC .
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Calibration of the energy estimation

The corrected energy of "contained" showers.
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The gaussian fit of the residuals, σ(∆E/E) = 0.49 ± 0.01 and the mean gaussian
value is 0.12 ± 0.02.
In this more realistic approach, the correction has improved the reconstructed/MC
energy ratio but the resolution on the energy has been enhanced.
A multivariate correction (shower axis angle, shower extension and vertex depth)
would be suited to improve that resolution.
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Calibration of the energy estimation

Resolution on the shower energy corrected as a function of the MC true energy.
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The final resolution of the OPERA calorimeter is therefore constant with the energy and
is about 50%. It does not fit with the usual stochastic behaviour in 1/

√
E because of a

too low sampling with 10 X0 in one brick.
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Testbeam data analysis

Ariga’s testbeam data analysis

Figure: Reconstructed energy on the selected electrons in testbeam data for 4 GeV (left) and 2
GeV (right).
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MC simulation to be compared at testbeam data.

The energy estimation results obtained with the MC simulation of 10 000 single
electrons sample for energies between 0.5 and 5.5 GeV and θ < 0.1 rd.
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The drop of the bin at 4 GeV is a statistical effect.
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Systematic uncertainty on the energy : comparison of MC simulation
with the testbeam data.

Summary of the electron energy estimation with testbeam data and MC simulation and
the inferred systematic uncertainty.

MC Energy (GeV) 2.4 3.6
Data Energy (GeV) 1.8 4.2

Sys. uncertainty (%) 25 17

The quoted systematic error on the energy estimation is much lower than the
resolution.
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Summary of the performance of energy estimation

Summary of the performance of the energy estimation of the electron showers :

On a pure sample of electrons : the resolution achieve with the OPERA
calorimeter is σE

E =
(34±5)%√

E
+ (11 ± 2)%.

The energy is corrected with the shower axis angle and as far as we have at least
20 plates to estimate the energy, the resolution is about 50%.

The data/MC comparison gives a systematic uncertainty on the energy of 25%.

Some improvements can be performed : multivariate correction, two-bricks
reconstruction but so far the OPERA calorimeter is limited by a low sampling.

Electromagnetic showers reconstruction and analysis and neutrino oscillation study by electron detection F. Brunet 38/56



Electromagnetic Shower Reconstruction Algorithm Electron identification Energy estimation Neutrino rates calculation.

Energy estimation results

Energy estimation of the νµ → νe oscillation sample used in the MC simulation
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Conclusion of the shower reconstruction in ECC

OPERA standard volume (10 plates) is suited to identify the electrons with an
efficiency of 81 ± 7% for the νµ → νe oscillation channel and 87 ± 15% for the
νµ → ντ (τ → e) channel.

OPERA standard volume is not sufficient for the energy estimation. About 20
plates are necessary to estimate the energy with a resolution of 50%. A correction
to the energy has been defined in order to reduce the bias due to the shower axis
angle but have also degraded the resolution from 35% to 50%.
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Oscillated νe rate calculation and measurement

Outline of the analysis

Neutrino event rates computed from the CNGS fluxes, neutrino cross sections and
OPERA detector features for all the relevant channel : νµ → νe, νe prompt,

τ → e, νµ NC and νµCC mis−−→ νµNC. Prompt νe QE+RES are also relevant
(0.2±0.04 events per 1019p.o.t.) but are still missing in this study.

Event location efficiency assessment with MC simulation in the OpRelease 4.0
and its systematic uncertainty computed with the muon misidentification in the ED.

Electron identification by triggering the electron events with CS hints and then
identifying with the shower algorithm. The systematic uncertainty of the
identification with the shower algorithm has been used.

Multivariate analysis with 5 kinematical variables : Visible Energy in the TT,
Electron energy, missing transverse momentum at primary vertex, phi angle
(angle between the hadronic pT and the pT of the electron) and the impact
parameter instead of using the DSP.
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Neutrino event rates computed from the CNGS fluxes, neutrino cross
sections and OPERA detector features

Signal Backgrounds

Oscillated
νe

τ → e νNC
µ

prompt
νe

prompt
νe

QE+RES

νCC
µ →

νNC
µ

Nevt exp.
in 2008-

2009

3.14 ±

0.48
5.12 ±

0.52
1100 ±

111
15.05 ±

1.06
1.48 ±

0.11 144 ± 15

Nevt @
22.5 ×

1019p.o.t.
13.3±2.0 21.7±2.2 4670 ±

473 63.9±4.5 6.3 ± 0.5 612 ± 62

Uncertainties are systematic, calculated from the uncertainties on the beam flux, the
cross sections and the non-isoscalar correction.
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Event location efficiency assessment with MC simulations

Summary of event location efficiency for each reconstruction step up to the location of
the neutrino interaction by the SB procedure.

oscillated
νe

τ → e νNC
µ

prompt
νe

prompt
νe

QE+RES

νCC
µ

mis−−→
νNC
µ

Muon Id
0.897 ±
0.010

0.852 ±
0.009

0.731 ±
0.008

0.752 ±
0.014

0.943 ±
0.007

0.073 ±
0.005

BF
0.784 ±
0.011

0.727 ±
0.015

0.537 ±
0.009

0.669 ±
0.015

0.841 ±
0.010

0.060 ±
0.025

CS
0.715 ±
0.026

0.612 ±
0.036

0.376 ±
0.016

0.660 ±
0.024

0.807 ±
0.022

0.053 ±
0.007

SB
0.642 ±
0.033

0.524 ±
0.054

0.340 ±
0.018

0.636 ±
0.028

0.730 ±
0.029

0.052 ±
0.007

The efficiency of each step is cumulative with respect to previous steps.

The uncertainties quoted are statistical.

Numbers from the BF up to the location are extrapolated from the 1-brick BF, CS
and SB efficiencies since the OpRelease 4.0 cannot process the 2nd brick.
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Event location efficiency : Data/MC comparison

Summary of event location in 2008 and 2009 data and comparison with MC
simulations.

2008 2009
0µ 1µ 0µ 1µ

Events found by
the ED

406 1292 1097 2460

Events located in
ECC

169 834 360 1490

DATA location
efficiency

0.416 ±
0.024

0.646 ±
0.013

0.328 ±
0.014

0.605 ±
0.010

MC location
efficiency with 2

CS tracks

0.340 ±
0.018

0.579 ±
0.029

0.340 ±
0.018

0.579 ±
0.029

MC location
efficiency with 1

CS track
-

0.775 ±
0.026

-
0.775 ±
0.026

The MC location efficiency is added for 0µ (νµ NC) and the event location efficiency for
the 1µ events is computed as for the νµ CC events.

The data/MC differences give the systematic uncertainties.
The reality of location efficiency is probably in between the 2 last rows.
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Event location efficiency : systematic uncertainty

Another way to address event location systematic uncertainty : summary of event
location efficiency with or without muon id.

oscillated
νe

τ → e νNC
µ

prompt
νe

prompt
νe

QE+RES

νCC
µ

mis−−→
νNC
µ

Standard
event

location

0.642 ±
0.033

0.524 ±
0.054

0.340 ±
0.018

0.636 ±
0.028

0.730 ±
0.029

-

Simplified
event

location

0.695 ±
0.031

0.585 ±
0.054

0.430 ±
0.019

0.805 ±
0.024

0.732 ±
0.029

-

Sys.
error

0.053 0.061 0.09 0.169 0.002 0.129

The systematic uncertainties are equivalent to the table on the last slide except for the

νCC
µ

mis−−→ νNC
µ channel. The systematic uncertainty inferred from the data/MC

comparison will be used for the latter.
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Electron identification efficiency : preliminary study.

Electron shower reconstruction represents a time-consuming computation process.
One has to check if other existing background sources would contribute to this study.

QE+RE interactions and charm → e channel rates in the OPERA detector at the event
location level.

charm →

e

prompt
νe

QE+RES

prompt
νe

τ → e
QE+RES

τ → e
osc.
νe

QE+RES

osc.
νe

ν
(1019pot)−1

2.2 ±
0.40

0.28 ±
0.07

2.8 ±
0.2

0.066±
0.007

0.97 ±
0.098

0.093±
0.014

0.59 ±
0.09

µ
misid

0.052±
0.007

- - - - - -

Evt
loc.

0.524±
0.061

0.730±
0.15

0.636±
0.169

0.374±
0.039

0.524±
0.061

0.642±
0.053

0.642±
0.053

Loc. ν
(1019pot)−1

0.060±
0.007

0.20 ±
0.04

1.78 ±
0.47

0.025±
0.003

0.508±
0.059

0.060±
0.005

0.379±
0.031

charm → e is at 10% level of the τ → e background.
τ → e QE+RES represents about 4% of the τ → e DIS events.
Oscillated νe QE+RES events correspond to 16% of the DIS ones.
νe QE+RES is the only one to be considered.
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Electron channels search procedure

This νe search process has been systematically applied on the localized events in the
2008-2009 data sample. It consists of a strategy based on two algorithms : the CS
shower hint and the electromagnetic shower reconstruction and identification.

CS shower hint : first an algorithm looks for clusters of tracks in the CS
corresponding to a shower. An electron hint is validated if the cluster is formed of
at least 3 tracks or more and if the position difference and angular difference
between the cluster and the other CS tracks are strictly less than 2 mm and
150 mrad respectively.

Electron identification : it is applied on a standard 10 plates volume if the former
CS shower hint did not recognize the event as an electron and on the whole brick
if the CS shower hint algorithm did validate that the event contains an electron.
The result of the shower identification algorithm finally distinguishes events
containing an electron from those without an electron.

CS shower hint algorithm triggers events in the inefficiency of the electron identification
algorithm in a 10 plates volume.
Moreover, additional pattern recognition algorithms are used to improve the electron
identification efficiency. Those are CS to vertex hint, SB shower hint and gamma hint.
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Oscillated νe rate calculation and measurement

Input variables
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Figure: Distribution of 4 of the input variables of the MVA for the signal and each MC background
superimposed. The black thick line represent the signal, i.e. the νµ → νe(e) oscillation
channel. The red, yellow and green histograms correspond respectively to the prompt νe ,
the νµ → ντ (τ → e) and the νµ NC channels.
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Oscillated νe rate calculation and measurement

Input variables
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Figure: Distribution of the impact parameter for the signal and each MC background superimposed.
The black thick line represent the signal, i.e. the νµ → νe(e) oscillation channel. The red,
yellow and green histograms correspond respectively to the prompt νe , the
νµ → ντ (τ → e) and the νµ NC channels.

The IP, the missing pT and the phi angle do not have an important discrimating power. The
limit to this study is the definition of the electron track which is not trivial.

Another problem is the definition of the primary vertex which can be far from the MC true
vertex, i.e. inside the shower.
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Oscillated νe rate calculation and measurement

Input variables distributions feed a multivariate analysis (MVA) using two methods to
discriminate background sources : a cut on the Fisher discriminant or an ANN to
classify signal and background events.

Multivariate analysis
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MVA Method:
Fisher
MLP

Background rejection versus Signal efficiency

Efficiency versus purity for the νe signal with respect to backgrounds for the two
methods Fisher and ANN.

The ANN method gives better results at high background rejection.

The Fisher gives better results at high signal efficiency.

To keep the signal efficiency as high as possible, Fisher method will be used.
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Oscillated νe rate calculation and measurement

Event rates

signal prompt νe τ → e νNC
µ

νCC
µ →

νNC
µ

Nevt exp. in
2008-2009 1.03 ± 0.23 17.1 ± 5.4 1.1 ± 0.6 6.4 ± 2.1 19.2±5.5

Nevt @
22.5 × 1019p.o.t. 4.4 ± 1.0 73 ± 23 4.7 ± 2.5 27 ± 9 82 ± 23

Significance in
2008-2009 - 0.24 0.71 0.38 0.23

Nevt exp. in
2008-2009 after

MVA
0.97 ± 0.22 4.9 ± 1.6

0.50 ±

0.28 1.2 ± 0.4 3.6 ± 1.0

Nevt @
22.5 × 1019p.o.t.

after MVA
4.1 ± 0.9 21 ± 7 2.1 ± 1.2 5.1 ± 1.7 15 ± 4

Significance in
08-09 after MVA - 0.40 0.80 0.66 0.45

The MVA reduce all background sources significantly.

The observation of an oscillation signal is possible with a significance of 0.6σ

The gamma background sources contribution is equivalent to the prompt νe one.
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Oscillated νe rate calculation and measurement

Comparison of MC with data for 4 of the kinematical variables.

 (MeV)TTE
0 500 1000 1500 2000 2500

-1
 (

25
0 

M
eV

)
ev

en
t

N

0

1

2

3

4

5

6

7

8

9

10

 (MeV)TTE
0 500 1000 1500 2000 2500

-1
 (

25
0 

M
eV

)
ev

en
t

N

0

1

2

3

4

5

6

7

8

9

10

 (GeV)eE
0 5 10 15 20 25 30

-1
 (

2 
G

eV
)

ev
en

t
N

0

1

2

3

4

5

6

 (GeV)eE
0 5 10 15 20 25 30

-1
 (

2 
G

eV
)

ev
en

t
N

0

1

2

3

4

5

6

 (GeV/c)
T

mis p
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1
 (

2 
G

ev
/c

)
ev

en
t

N

0

1

2

3

4

5

6

7

8

 (GeV/c)
T

mis p
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1
 (

2 
G

ev
/c

)
ev

en
t

N

0

1

2

3

4

5

6

7

8

 Angle (rd)φ
0 0.5 1 1.5 2 2.5 3

-1
 (

0.
02

 r
d)

ev
en

t
N

0

1

2

3

4

5

6

7

 Angle (rd)φ
0 0.5 1 1.5 2 2.5 3

-1
 (

0.
02

 r
d)

ev
en

t
N

0

1

2

3

4

5

6

7

Electromagnetic showers reconstruction and analysis and neutrino oscillation study by electron detection F. Brunet 53/56



Electromagnetic Shower Reconstruction Algorithm Electron identification Energy estimation Neutrino rates calculation.

Oscillated νe rate calculation and measurement

Comparison of MC with data for the impact parameter.
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Comments

The MC distributions are normalized to data.

The agreement between MC and data for the considered variables is quite good.
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τe rate calculation and measurement

Event rates

τ → e signal
oscillated

νe

prompt
νe

νNC
µ

νCC
µ

→
νNC
µ

Nevt exp. in
2008-2009

1.1 ± 0.6
1.03 ±
0.23

17.1 ±
5.4

6.4±2.1
19.2 ±

5.5
Nevt @

22.5 × 1019p.o.t.
4.7 ± 2.5 4.4±1.0 73 ± 23 27 ± 9 82 ± 23

Significance @
22.5 × 1019p.o.t.

- 1.56 0.53 0.83 0.50

Nevt @
22.5 × 1019p.o.t.

after MVA
4.7 ± 2.5 3.7±0.8 66 ± 21 25 ± 8 77 ± 22

Significance @
22.5 × 1019p.o.t.

after MVA
- 1.62 0.56 0.86 0.52

The MVA cannot discriminate the background sources from the signal.

The observation of an oscillation signal is possible with a significance of 0.2σ

The gamma background sources contribution is equivalent to the prompt νe one.
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Conclusion

Electromagnetic shower reconstruction

Identification efficiency and energy estimation have been assessed with their
systematic uncertainty.

The shower algorithm is finally ready to be used in the OPERA analysis.

Oscillated νe rate calculation and measurement

The observation of the νµ → νe oscillation is possible with a significance of 0.6σ
evaluated on a full MC simulation.

The gamma contamination reduction performed on data should be studied on MC
simulations.

The agreement between MC and data for the considered variables is quite good.

Separate the τ → e signal from the background is a really complicated task.

Prospects

The shower reconstruction within 2 bricks feature needs a dedicated tool.

Some other improvements in this analysis could be performed (energy correction,
MC OpRelease 4.1).
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