

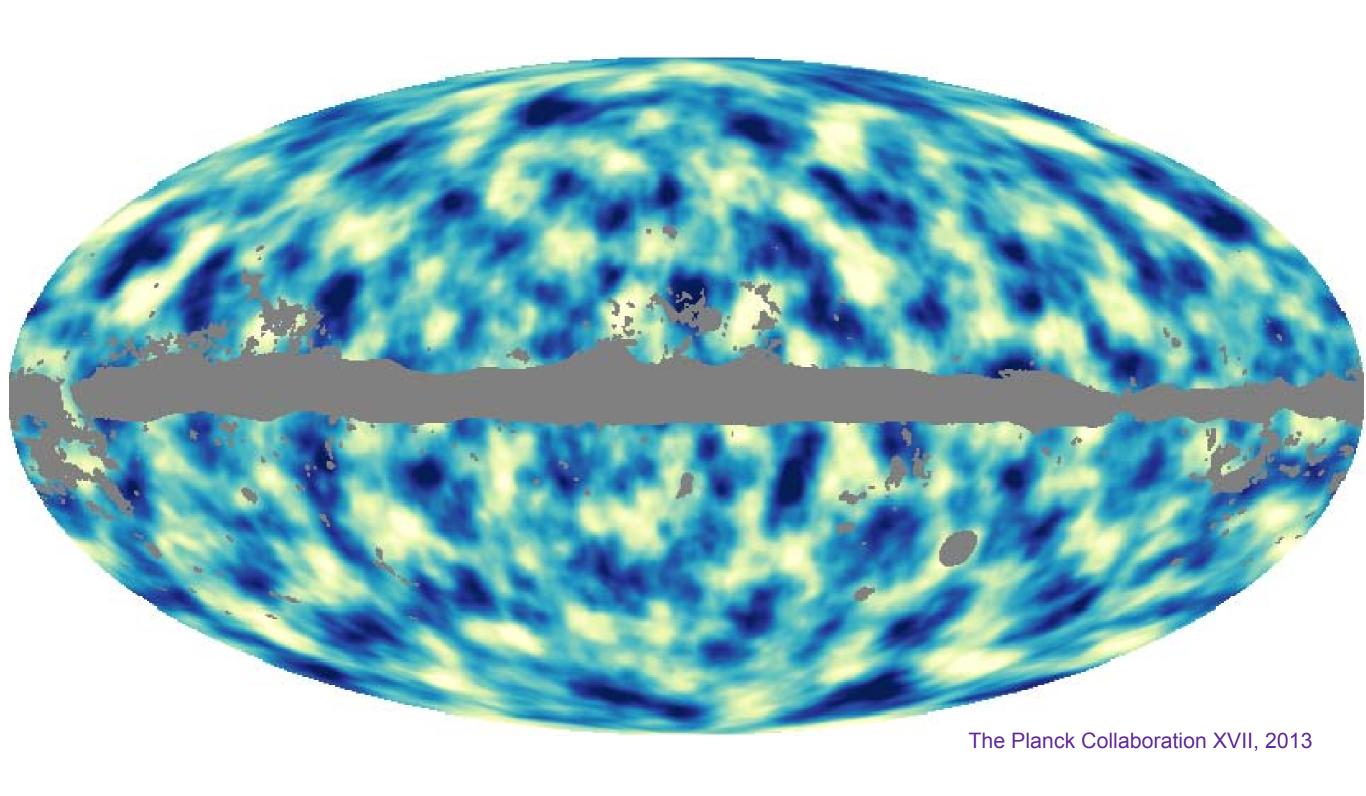
The large-scale structure of the Universe as seen by Planck

Results from Planck 2013 Results. XVII

Aurélien Benoit-Lévy

University College London

The matter in the Universe as seen by Planck



The scientific results that we present today are a product of Planck Collaboration, including individuals from more the than 100 scientific institutes in Europe, the USA and Canada

planck

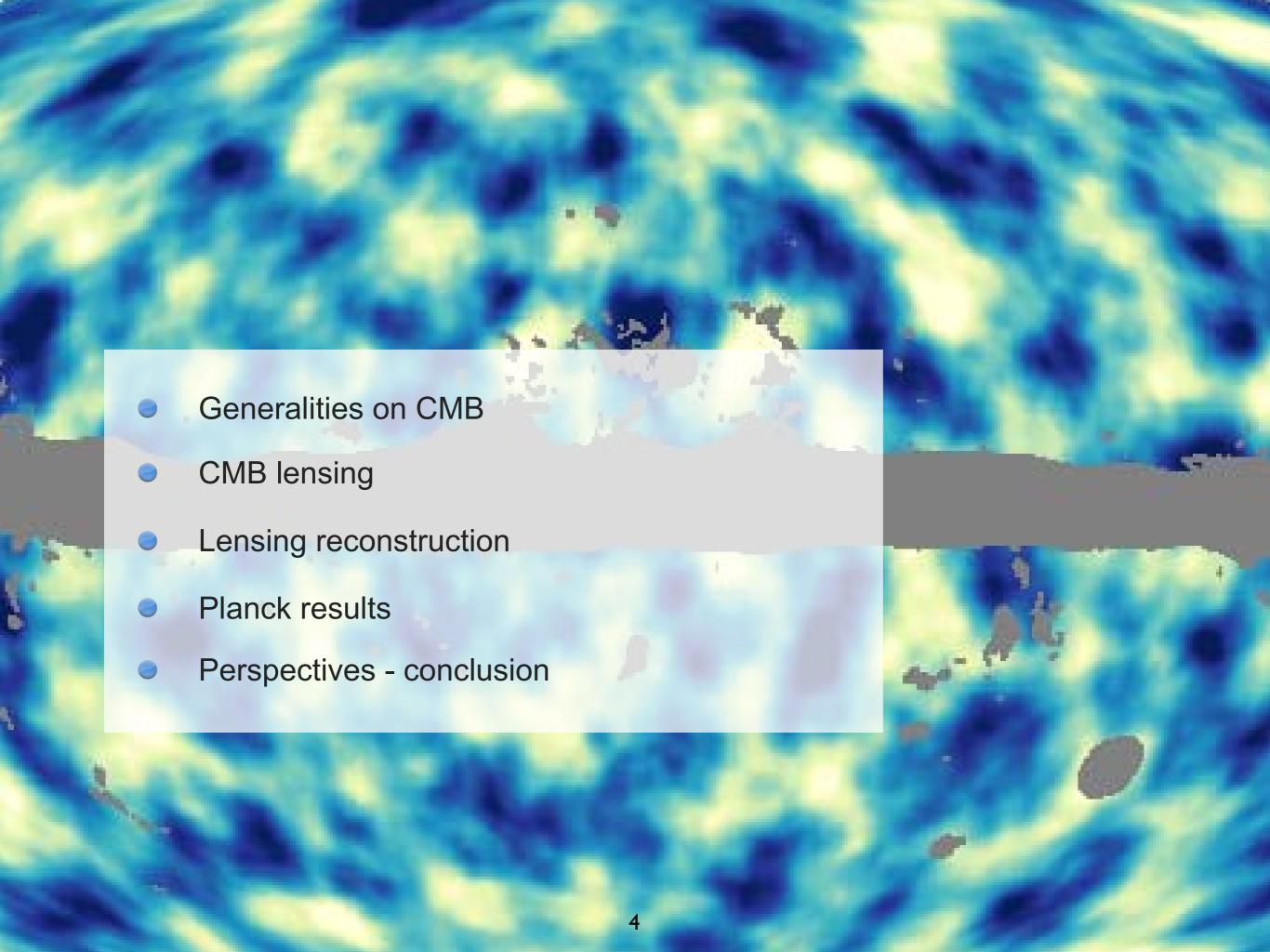
DTU Space

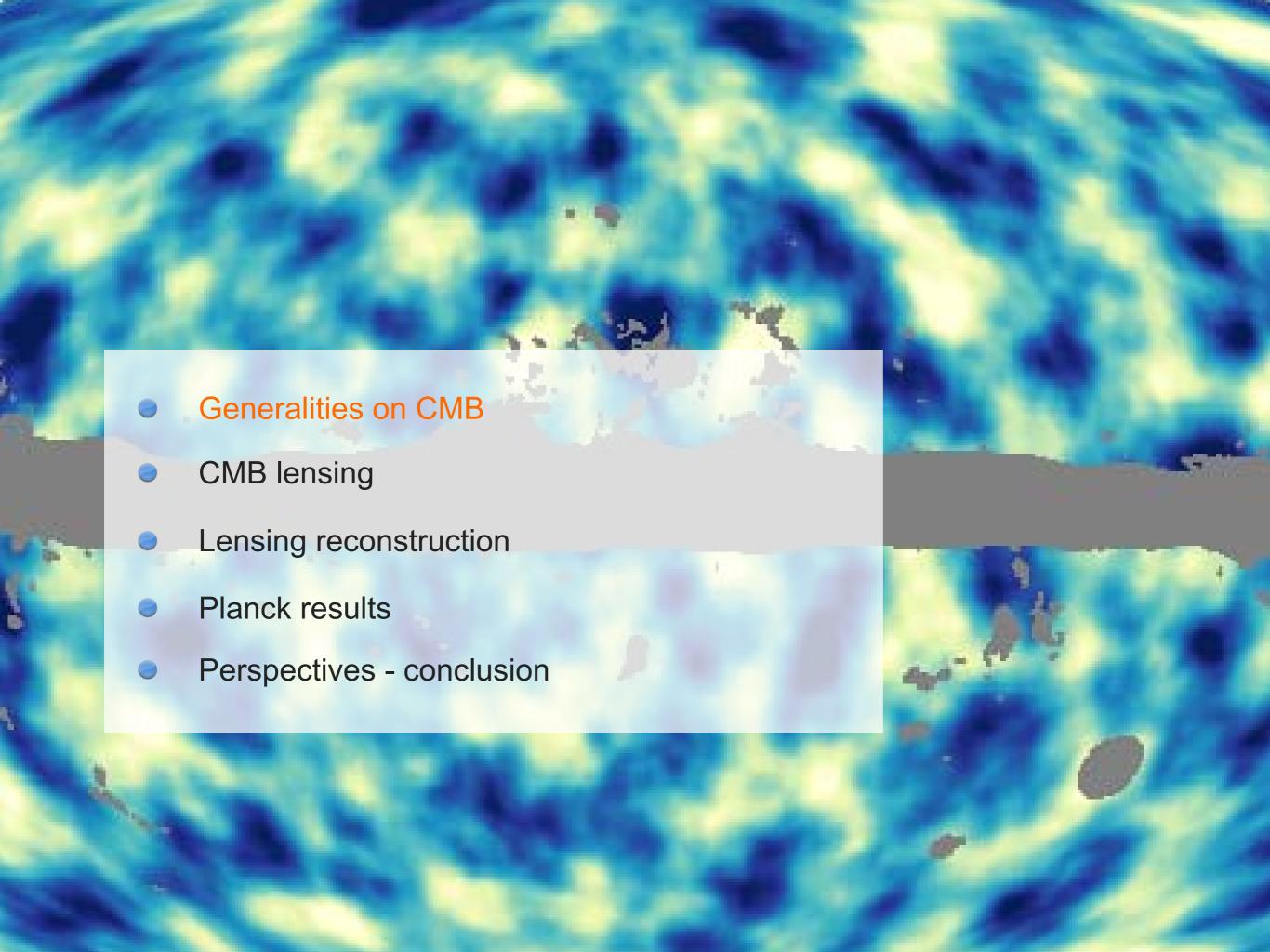
Planck is a

Deutsches Zentrum

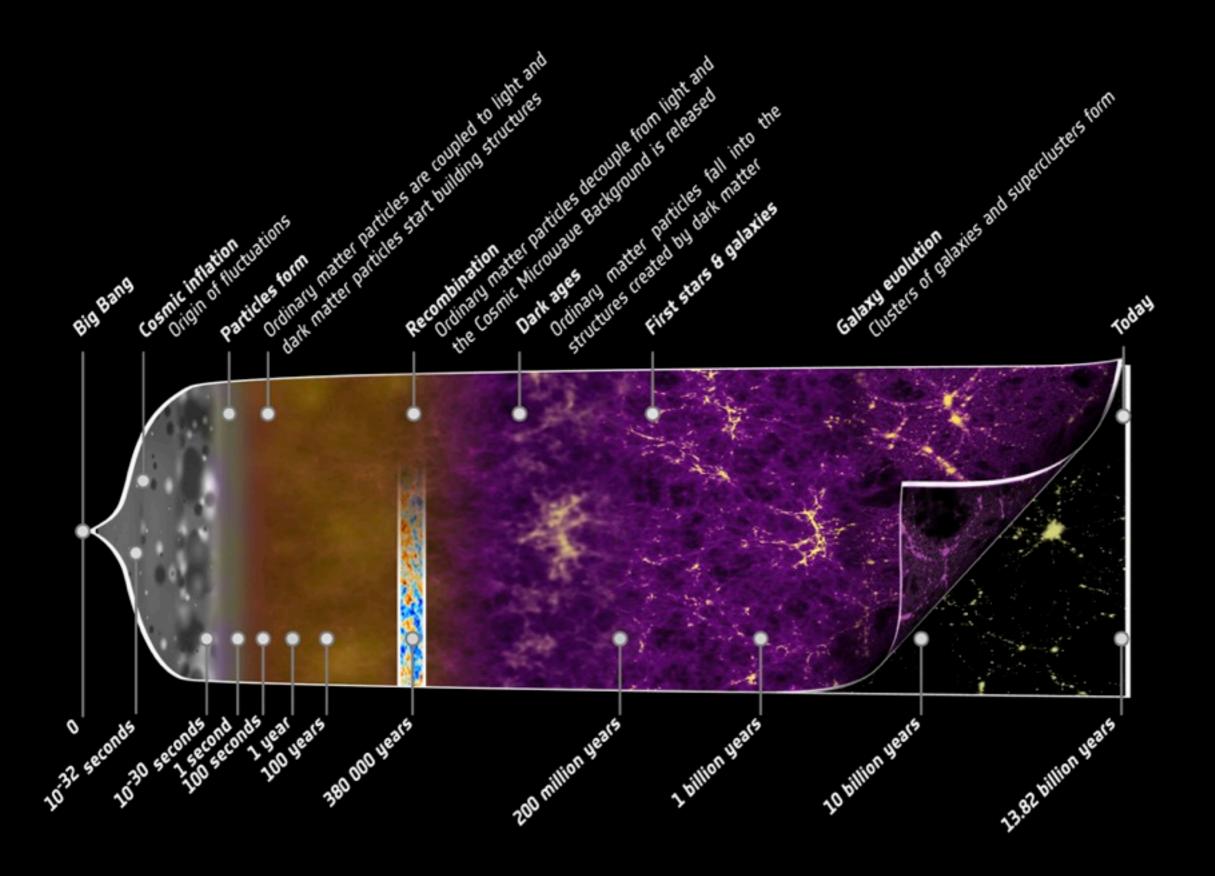
DLR für Luft- und Raumfahrt e.V.

European Space Agency, with instruments provided by two Consortia funded by ESA member particular the lead countries: rance and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

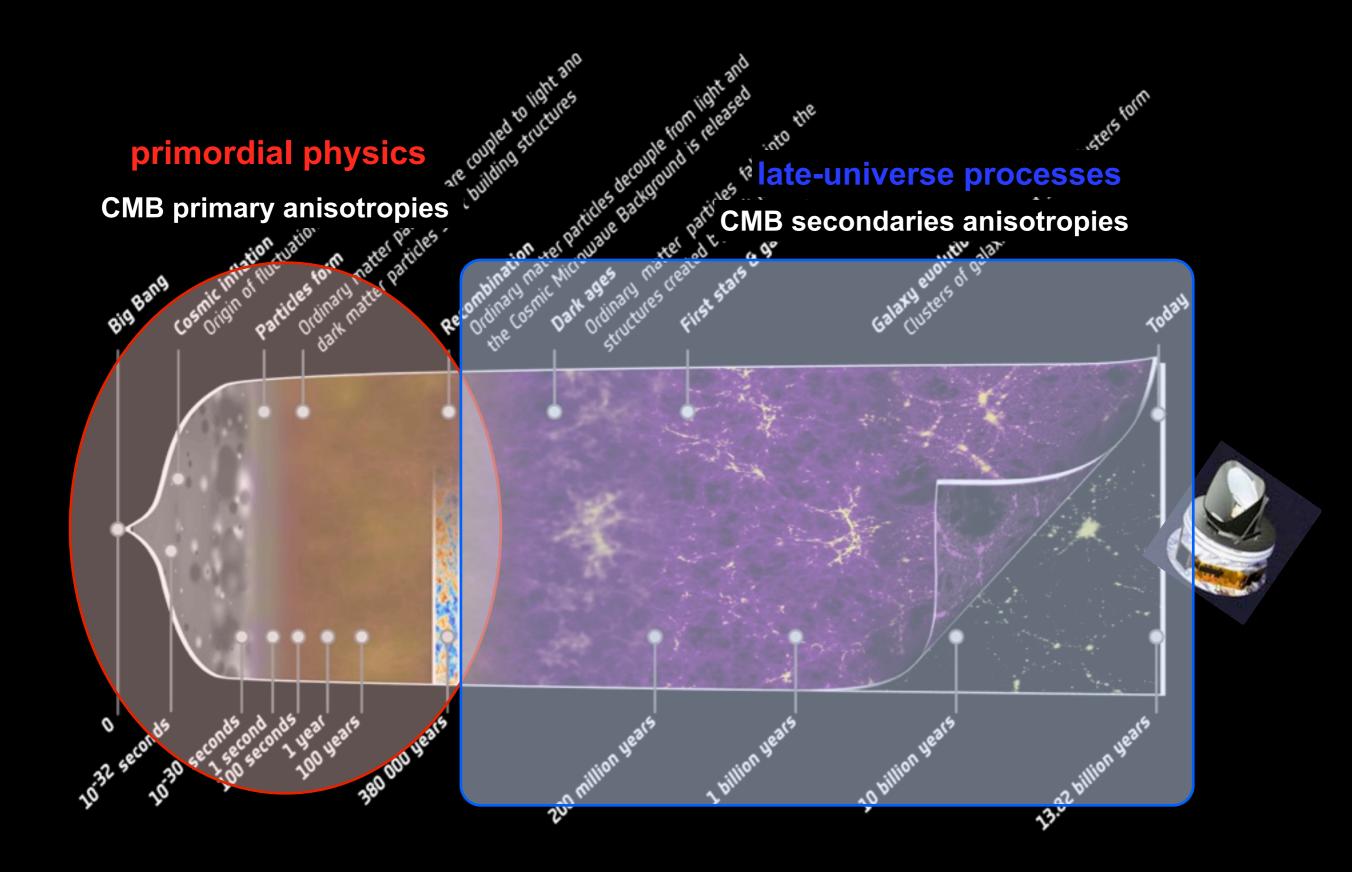


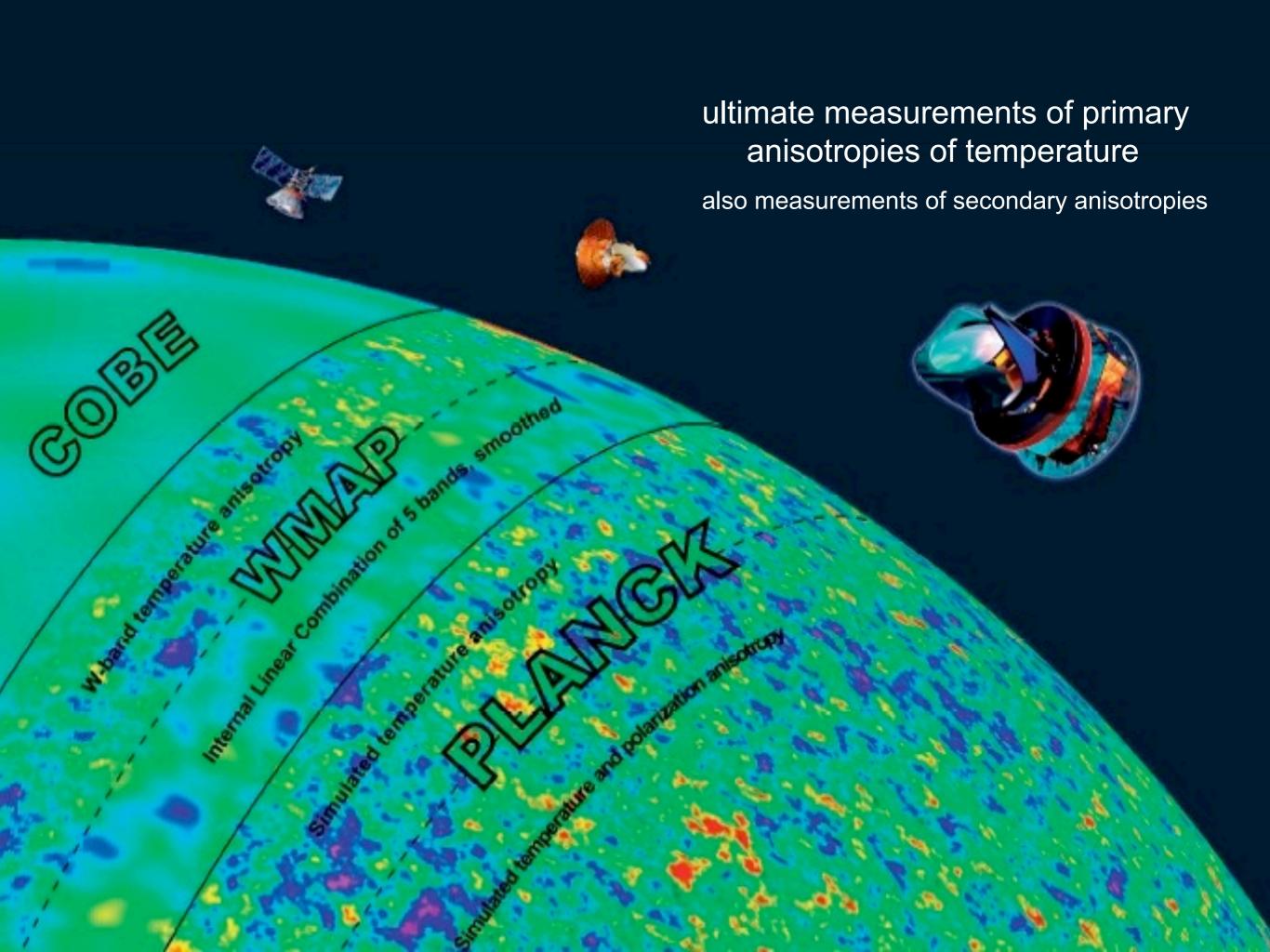


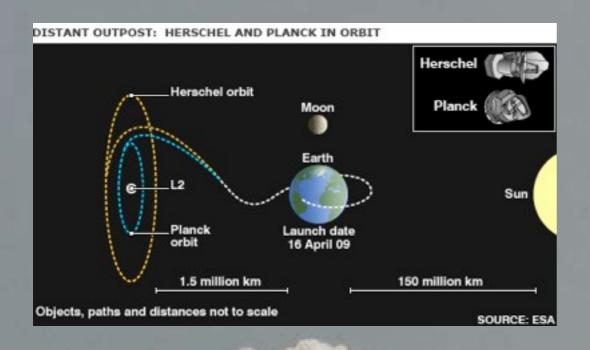
A (very) schematic history of our Universe

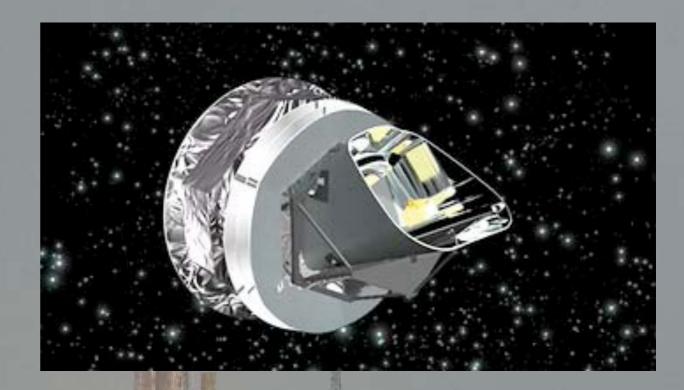


CMB: central observation in cosmology







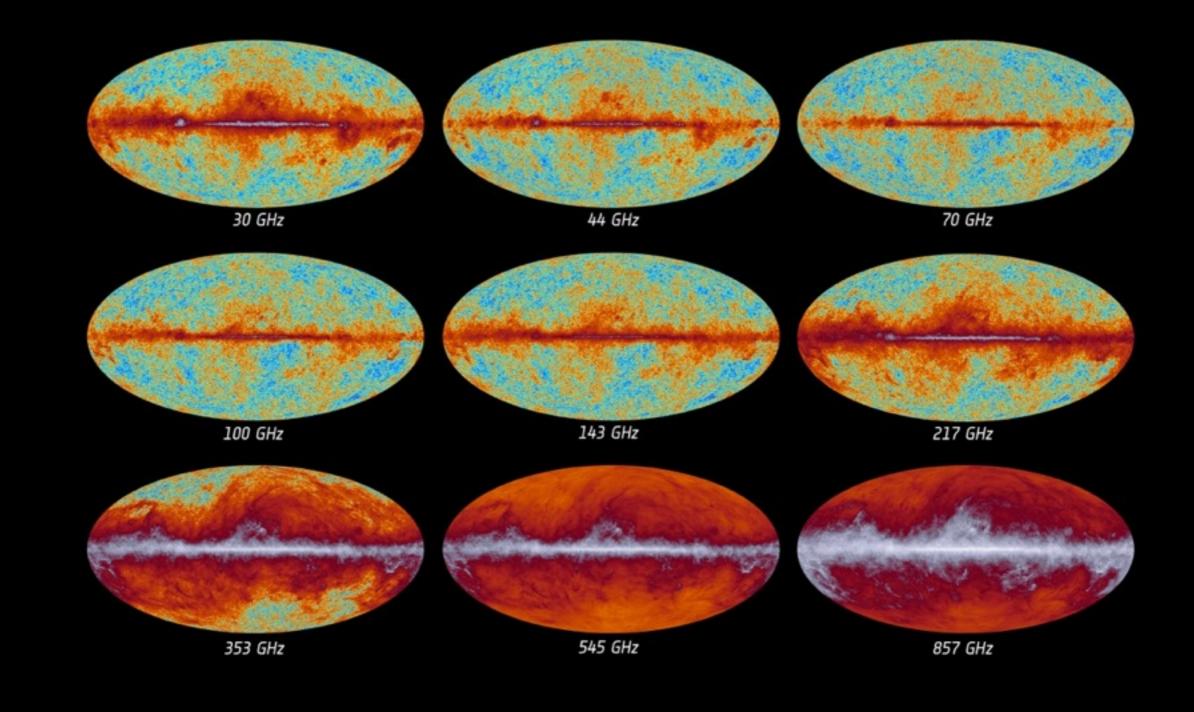


- Launched in May 14th 2009
- First complete coverage of sky in June 2010
- Nominal mission completed in November 2010
- End of light January 14th 2012. 32 months after launch

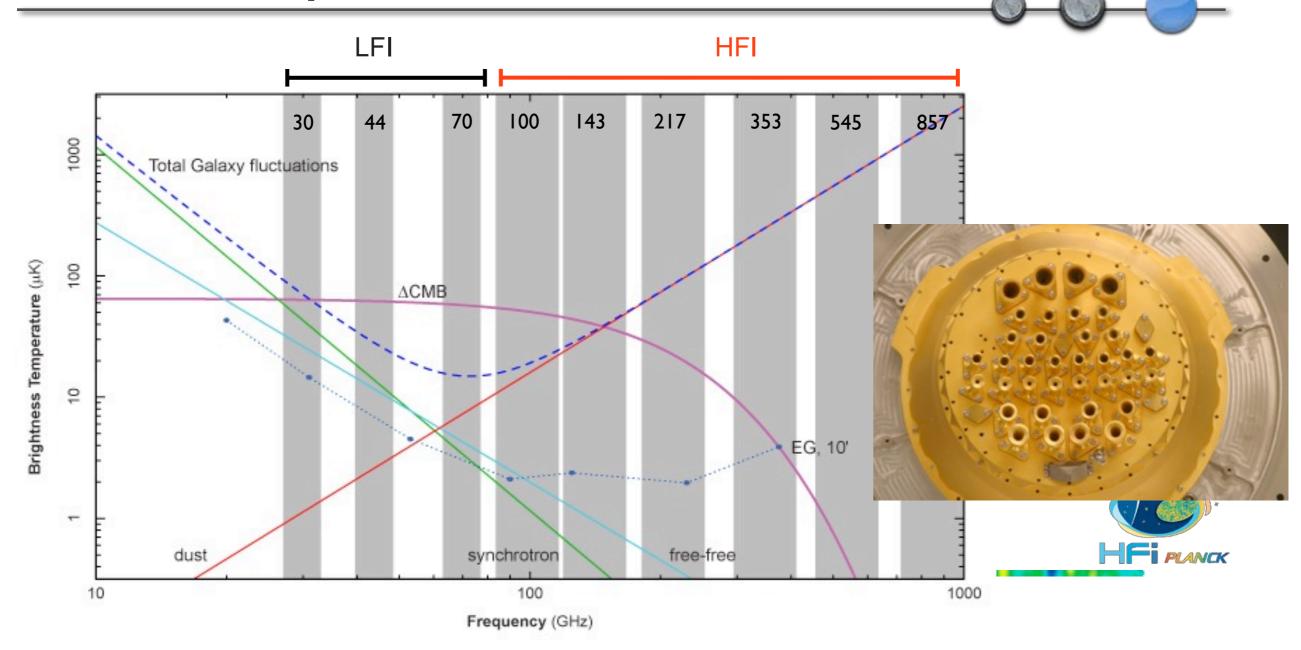
First cosmology release 21st March 2013

Full release in 2014

The sky as seen by Planck

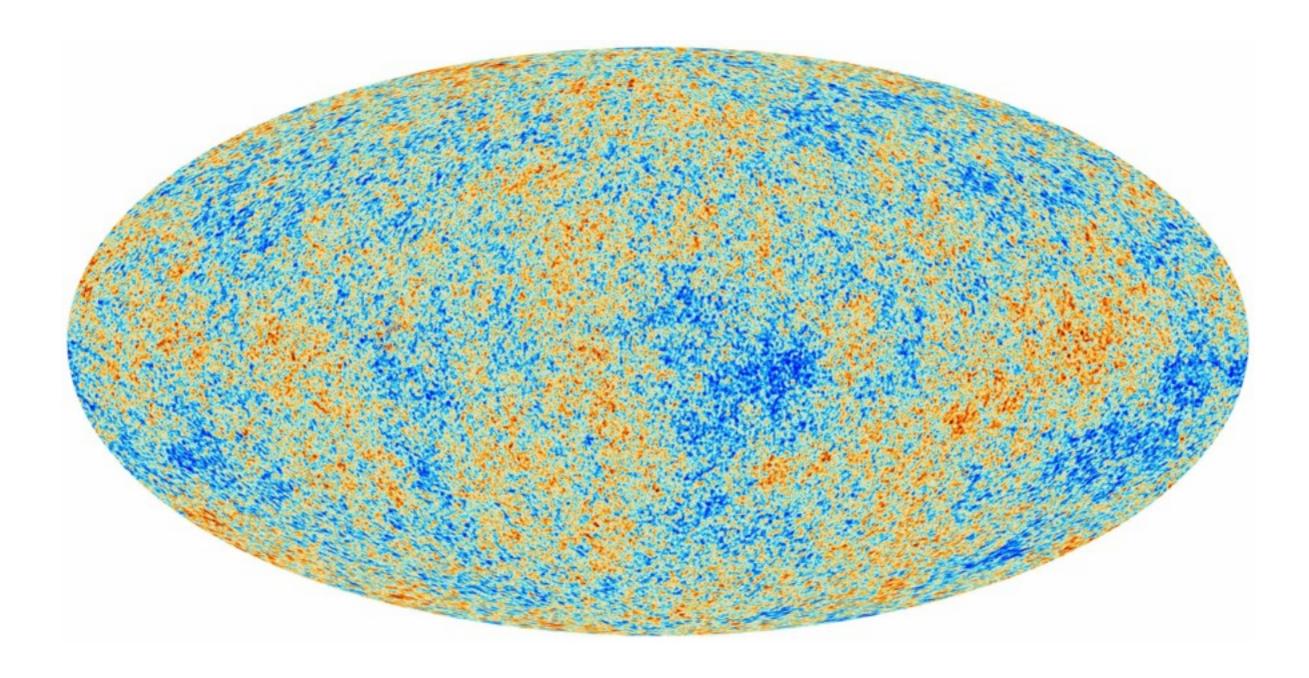


Planck concept



PLANCK	LFI			HFI					
Center Freq (GHz)	30	44	70	100	143	217	353	545	857
Angular resolution (FWHM arcmin)	33	24	14	10	7.1	5.0	5.0	5	5
Sensitivity in I [μ K.deg] [$\sigma_{pix} \Omega_{pix}^{1/2}$]	3.0	3.0	3.0	1.1	0,7	1.1	3.3	33	3.0

Planck full-sky CMB map



3% sky fraction filled with Gaussian constrained realisations

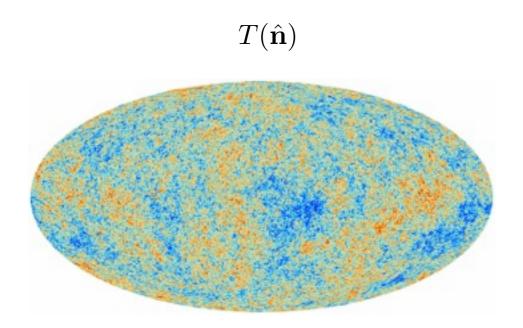
Decompose the temperature on the sphere

 $T(\hat{\mathbf{n}})$

 \rightarrow $T_{\ell m}$

Decompose the temperature on the sphere

$$T(\hat{\mathbf{n}}) \longrightarrow T_{\ell m}$$



$T_{\ell m}$

```
-1.36393664e-06 +1.78900125e-07j,
3.48160018e-07 +5.48607128e-07j,
8.64414116e-07 +1.58062970e-06j,
2.32962756e-07 +1.72990879e-07j,
2.07366735e-07 -1.48637056e-06j,
1.33636760e-06 +1.44430207e-06j,
-1.33047477e-06 +1.49222938e-06j,
2.01588688e-07 +1.39367943e-08j,
1.20185303e-06 -1.04105033e-06j,
-1.88960308e-06 -2.69868746e-07j,
1.06239463e-06 +4.31127048e-07j,
3.98739296e-07 +1.19163879e-07j,
-1.24503110e-06 -1.93401840e-06j,
5.68052758e-07 -2.28955226e-07j,
-2.60272490e-07 +2.21246718e-06j,
-1.11889361e-06 +1.87312956e-06j,
9.72080476e-07 -6.89214224e-07j,
3.26351028e-07 +1.08530943e-06j,
2.14977119e-06 -9.44341599e-07j,
```


Decompose the temperature on the sphere

$$T(\hat{\mathbf{n}})$$

$$T_{\ell m}$$

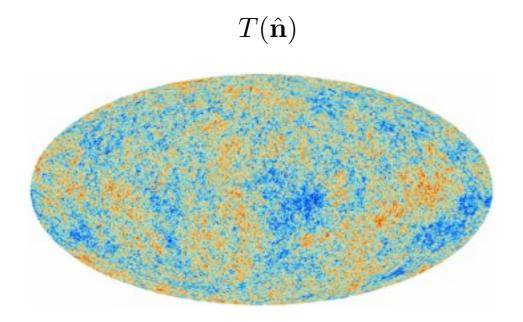
CMB is (almost) Gaussian: all the information is in the variance

$$\langle t_{\ell m} t_{\ell' m'}^* \rangle = C_{\ell}$$

Power spectrum can be computed: e.g. CAMB

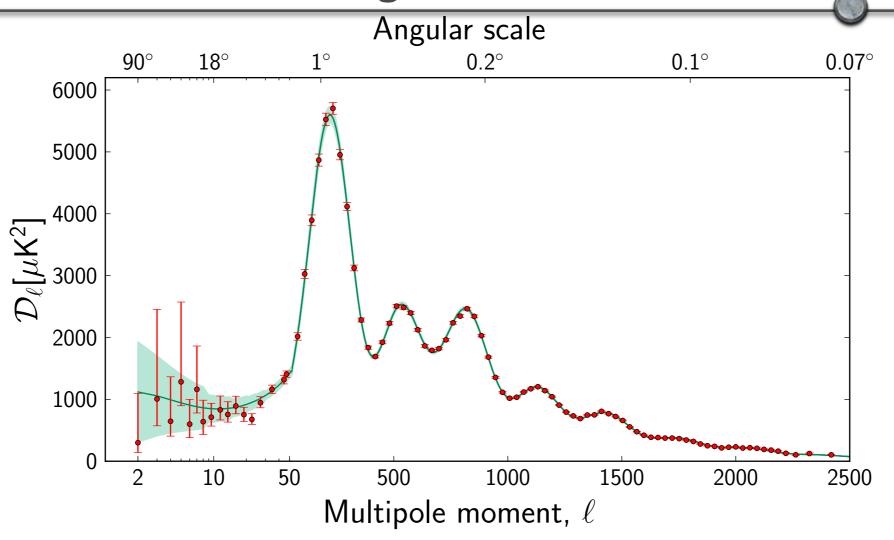
Can be measured from observations: e.g. pseudo-Cl's

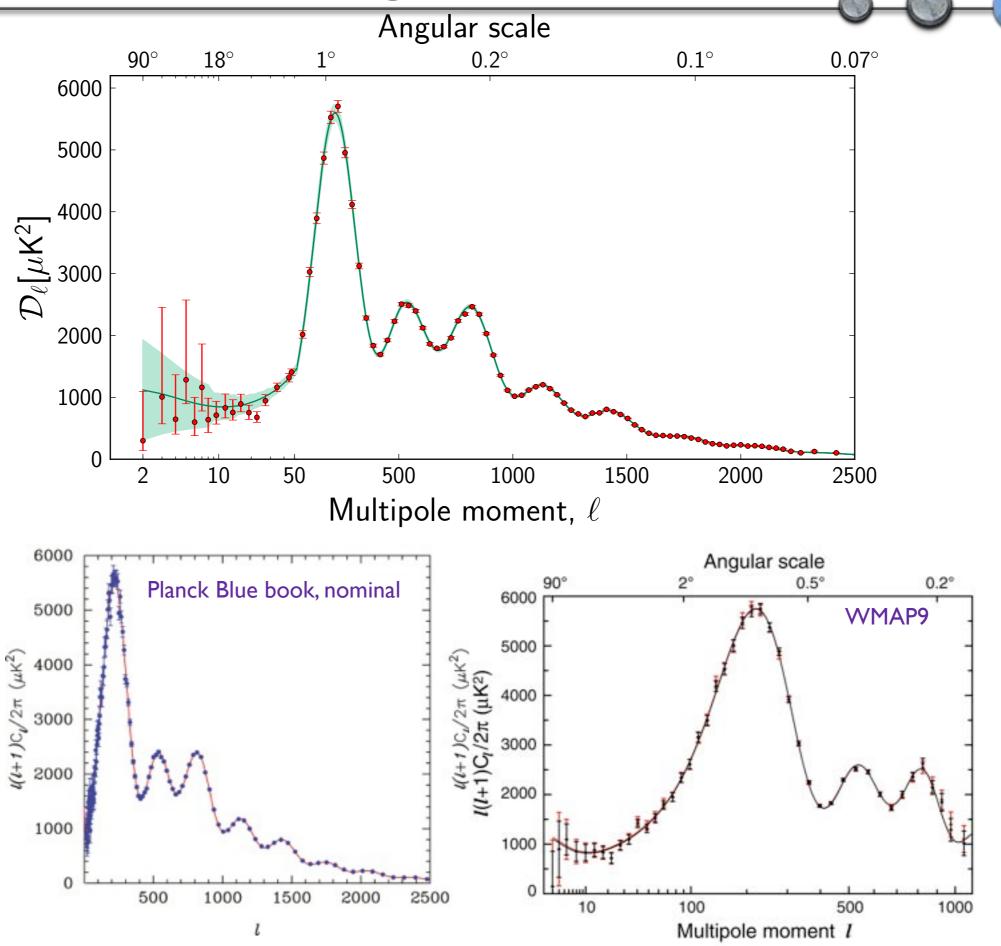
$$\hat{C}_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |T_{\ell m}|^2$$



$T_{\ell m}$

```
-1.36393664e-06 +1.78900125e-07j,
3.48160018e-07 +5.48607128e-07j,
8.64414116e-07 +1.58062970e-06j,
2.32962756e-07 +1.72990879e-07j,
2.07366735e-07 -1.48637056e-06j,
1.33636760e-06 +1.44430207e-06j,
-1.33047477e-06 +1.49222938e-06j,
2.01588688e-07 +1.39367943e-08j,
1.20185303e-06 -1.04105033e-06j,
-1.88960308e-06 -2.69868746e-07j,
1.06239463e-06 +4.31127048e-07j,
-1.24503110e-06 -1.93401840e-06j,
5.68052758e-07 +6.49802586e-08j,
5.05386856e-07 -2.28955226e-07j,
-2.60272490e-07 +2.21246718e-06j,
-1.11889361e-06 +1.97312956e-06j,
9.72080476e-07 -6.89214224e-07j,
3.26351028e-07 +1.08530943e-06j,
2.14977119e-06 -9.44341599e-07j,
```





Planck cosmological parameters

0.975 1.000

 $n_{\rm s}$

0.950

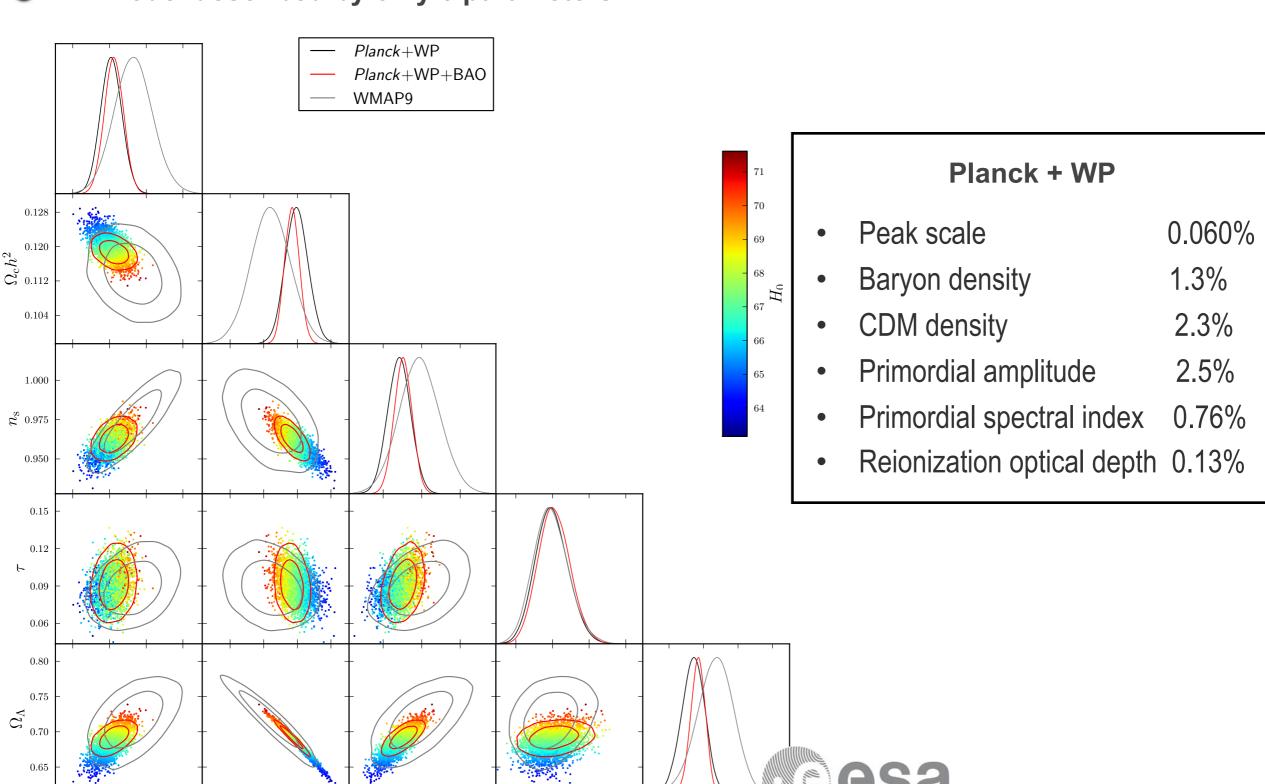
 $0.022 \quad 0.023 \quad 0.024$

 $\Omega_{\rm b}h^2$

 $0.104 \quad 0.112 \quad 0.120 \quad 0.128$

 $\Omega_c h^2$

A model described by only 6 parameters



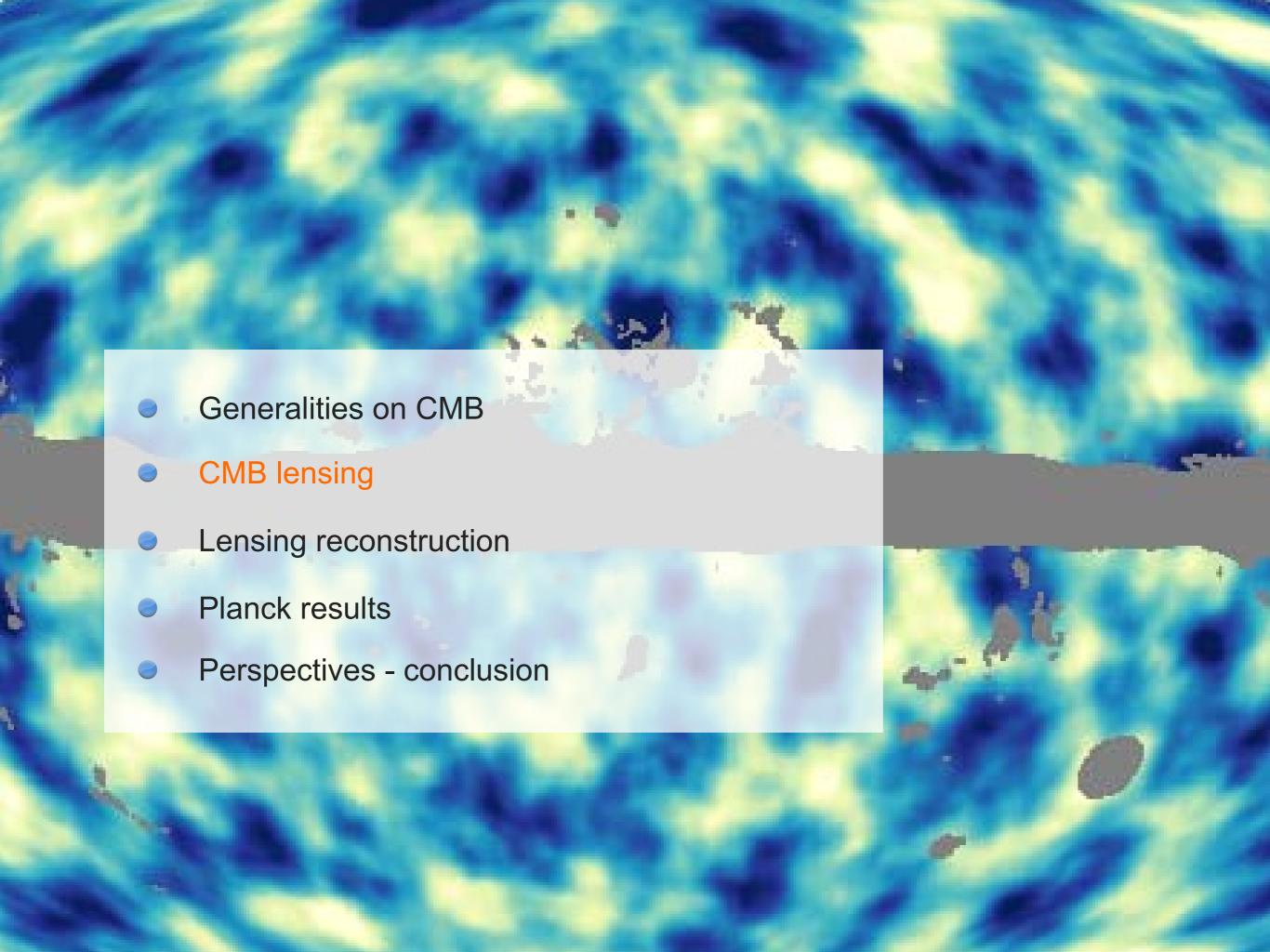
0.15

0.12

0.09

0.65

 Ω_{Λ}



Decompose the temperature on the sphere

- $T(\hat{\mathbf{n}}) \longrightarrow T_{\ell m}$
- OMB is (almost) Gaussian: all the information is in the variance $\langle t_{\ell m} t_{\ell' m'}^*
 angle = C_\ell$

Decompose the temperature on the sphere

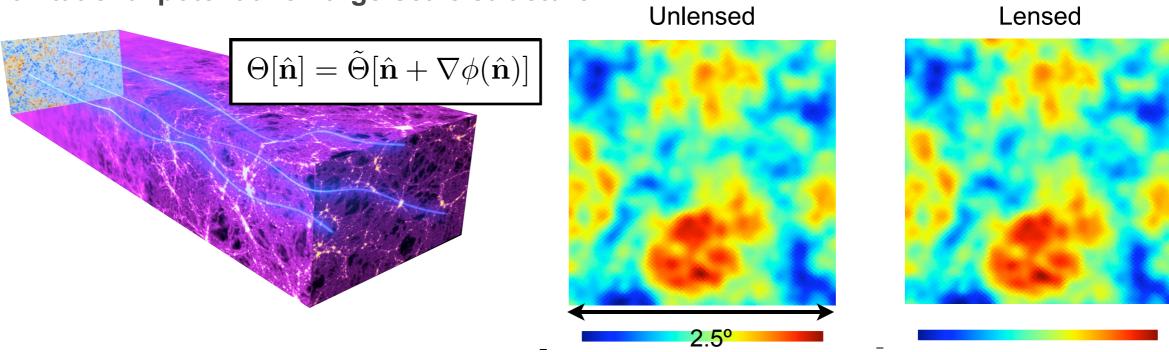
$$T(\hat{\mathbf{n}}) \longrightarrow T_{\ell m}$$

CMB is (almost) Gaussian: all the information is in the variance.

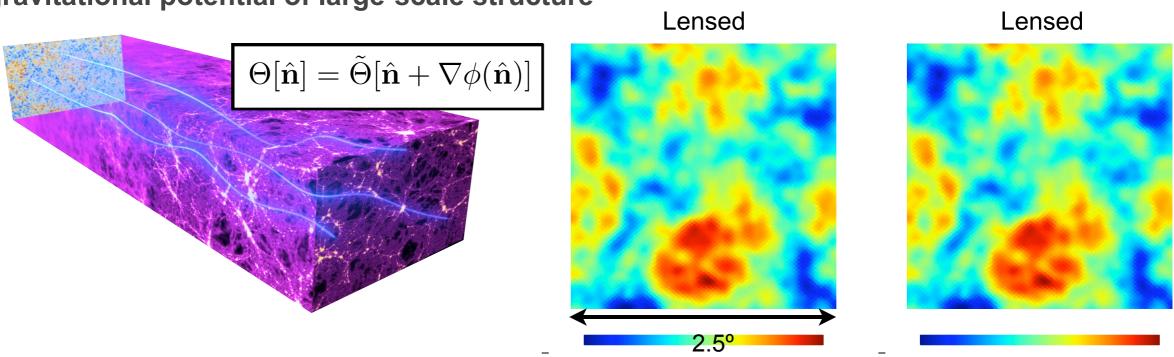
$$\langle t_{\ell m} t_{\ell' m'}^* \rangle = C_{\ell}$$

- ★ Primordial non-Gaussianities, e.g f_{nl}
- Gravitational lensing of the CMB
- * ...

Photons from last scattering surface deflected by gravitational potential of large-scale structure

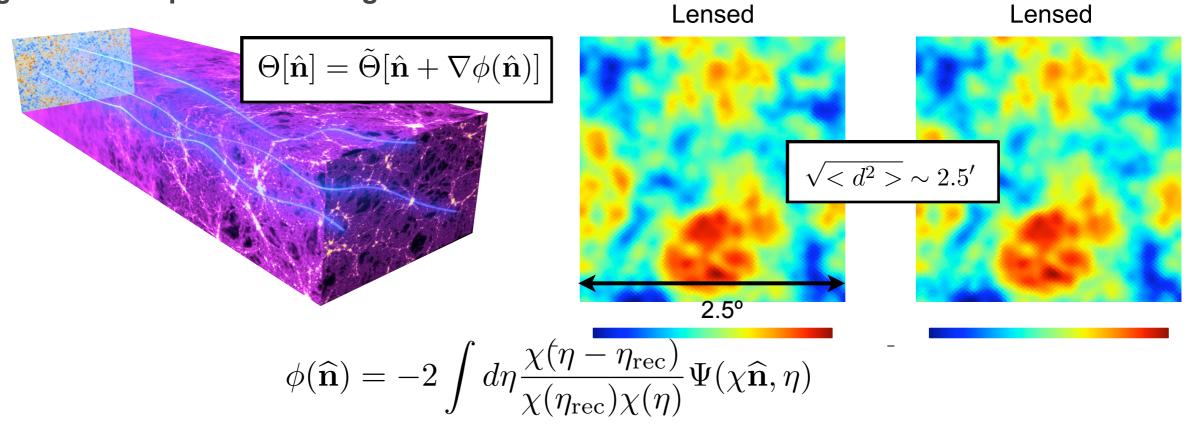


Photons from last scattering surface deflected by gravitational potential of large-scale structure



CMB lensing

Photons from last scattering surface deflected by gravitational potential of large-scale structure



- Typical deflections: ~2.5 arcmin
- Coherent on the degree scale
- Sources temperature-gradient correlation

Lensing potential reconstruction

Impact of CMB lensing

$$\Theta[\hat{\mathbf{n}}] = \tilde{\Theta}[\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}})] \longrightarrow \Theta(\hat{\mathbf{n}}) = \tilde{\Theta}(\hat{\mathbf{n}}) + \nabla_i \phi(\hat{\mathbf{n}}) \nabla^i \tilde{\Theta}(\hat{\mathbf{n}}) + \cdots$$

Temperature and gradient become correlated

$$\langle t_{\ell m} t_{\ell' m'}^* \rangle_{|CMB} = C_{\ell} + \sum_{\lambda \mu} F_{mm'\mu}^{\ell \ell' \lambda} \phi_{\lambda \mu}$$

Impact of CMB lensing

$$\Theta[\hat{\mathbf{n}}] = \tilde{\Theta}[\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}})] \longrightarrow \Theta(\hat{\mathbf{n}}) = \tilde{\Theta}(\hat{\mathbf{n}}) + \nabla_i \phi(\hat{\mathbf{n}}) \nabla^i \tilde{\Theta}(\hat{\mathbf{n}}) + \cdots$$

Temperature and gradient become correlated

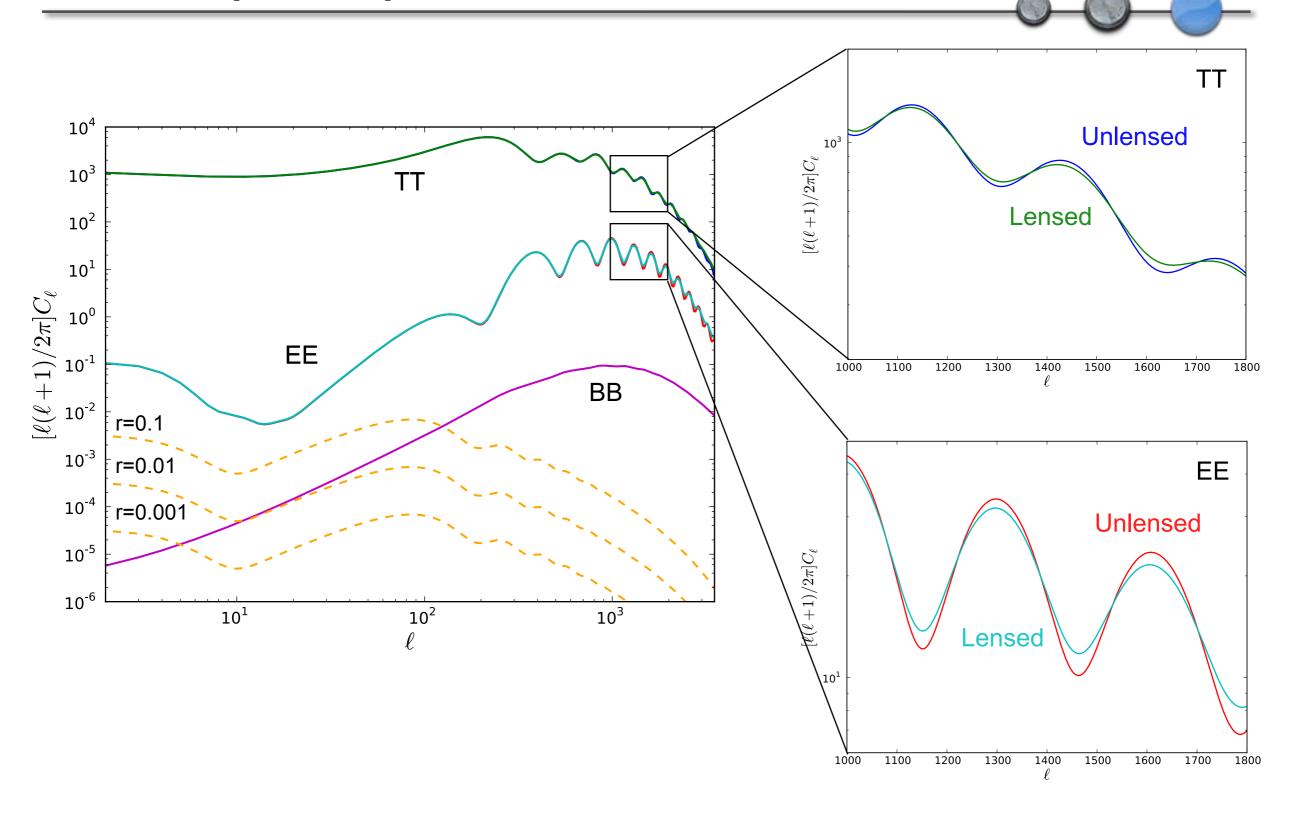
$$\langle t_{\ell m} t_{\ell' m'}^* \rangle_{|CMB} = C_{\ell} + \sum_{\lambda \mu} F_{mm'\mu}^{\ell \ell' \lambda} \phi_{\lambda \mu}$$

CMB lensing induces mode coupling

$$C_{\ell} \sim (1 - \alpha_{\ell})\tilde{C}_{\ell} + \sum_{\ell_1 \ell_2} C_{\ell_1}^{\phi \phi} \tilde{C}_{\ell_2} F_{\ell \ell_1 \ell_2}$$

 Modifies the shape of observed power spectra

Effect on power spectra



Impact of CMB lensing

$$\Theta[\hat{\mathbf{n}}] = \tilde{\Theta}[\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}})] \longrightarrow \Theta$$

$$\Theta(\mathbf{\hat{n}}) = \tilde{\Theta}(\mathbf{\hat{n}}) + \nabla_i \phi(\mathbf{\hat{n}}) \nabla^i \tilde{\Theta}(\mathbf{\hat{n}}) + \cdots$$

Temperature and gradient become correlated

$$\langle t_{\ell m} t_{\ell' m'}^* \rangle_{|CMB} = C_{\ell} + \sum_{\lambda \mu} F_{mm'\mu}^{\ell \ell' \lambda} \phi_{\lambda \mu}$$

CMB lensing induces mode coupling

$$C_{\ell} \sim (1 - \alpha_{\ell})\tilde{C}_{\ell} + \sum_{\ell_1 \ell_2} C_{\ell_1}^{\phi \phi} \tilde{C}_{\ell_2} F_{\ell \ell_1 \ell_2}$$

- Modifies the shape of observed power spectra
- Creates non-Gaussian terms in the spectra covariance
 ABL, Smith & Hu (PRD, 2012)

Lensing information is encoded in anisotropies spectra

Unlensed CMB is Gaussian: modes are independent

$$cov(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ}) = cov^G(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ})$$

$$\operatorname{Cov}_{\ell_1 \ell_2}^{XY, WZ} = \frac{1}{2\ell_1 + 1} \left[C_{\ell_1}^{XW} C_{\ell_1}^{YZ} + C_{\ell_1}^{XZ} C_{\ell_1}^{YW} \right] \delta_{\ell_1, \ell_2}$$

$$\operatorname{Cov}_{\ell_1 \ell_2}^{BB, BB} = \frac{2}{2\ell_1 + 1} \left(C_{\ell_1}^{BB} \right)^2 \delta_{\ell_1, \ell_2}$$

Covariance induced by CMB lensing

$$cov(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ}) = cov^G(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ}) + cov^{NG}(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ})$$

$$\operatorname{Cov}_{\ell_1 \ell_2}^{XY,WZ} = \frac{1}{2\ell_1 + 1} \left[C_{\ell_1}^{XW} C_{\ell_1}^{YZ} + C_{\ell_1}^{XZ} C_{\ell_1}^{YW} \right] \delta_{\ell_1,\ell_2}$$

$$+ \sum_{\ell} \left[\frac{\partial C_{\ell_1}^{XY}}{\partial C_{\ell}^{\phi\phi}} \operatorname{Cov}_{\ell\ell}^{\phi\phi,\phi\phi} \frac{\partial C_{\ell_2}^{WZ}}{\partial C_{\ell}^{\phi\phi}} \right]$$

$$\operatorname{Cov}_{\ell_{1}\ell_{2}}^{BB,BB} = \frac{2}{2\ell_{1}+1} \left(C_{\ell_{1}}^{BB}\right)^{2} \delta_{\ell_{1},\ell_{2}}$$

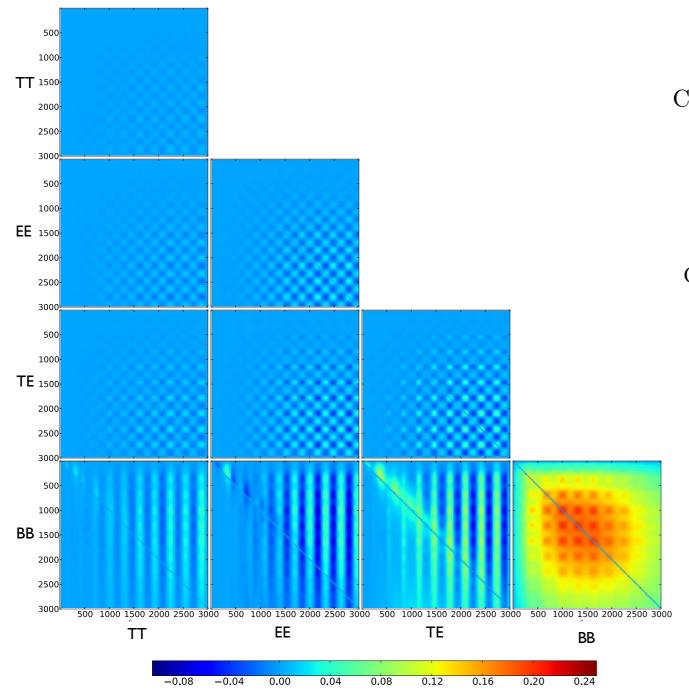
$$+ \sum_{\ell} \left(\frac{\partial C_{\ell_{1}}^{BB}}{\partial C_{\ell}^{\tilde{E}\tilde{E}}} \operatorname{Cov}_{\ell\ell}^{\tilde{E}\tilde{E},\tilde{E}\tilde{E}} \frac{\partial C_{\ell_{2}}^{BB}}{\partial C_{\ell}^{\tilde{E}\tilde{E}}}\right)$$

$$+ \sum_{\ell} \left(\frac{\partial C_{\ell_{1}}^{BB}}{\partial C_{\ell}^{\phi\phi}} \operatorname{Cov}_{\ell\ell}^{\phi\phi,\phi\phi} \frac{\partial C_{\ell_{2}}^{BB}}{\partial C_{\ell}^{\phi\phi}}\right)$$

ABL, Smith & Hu (*PRD*, 2012)

Covariance induced by CMB lensing

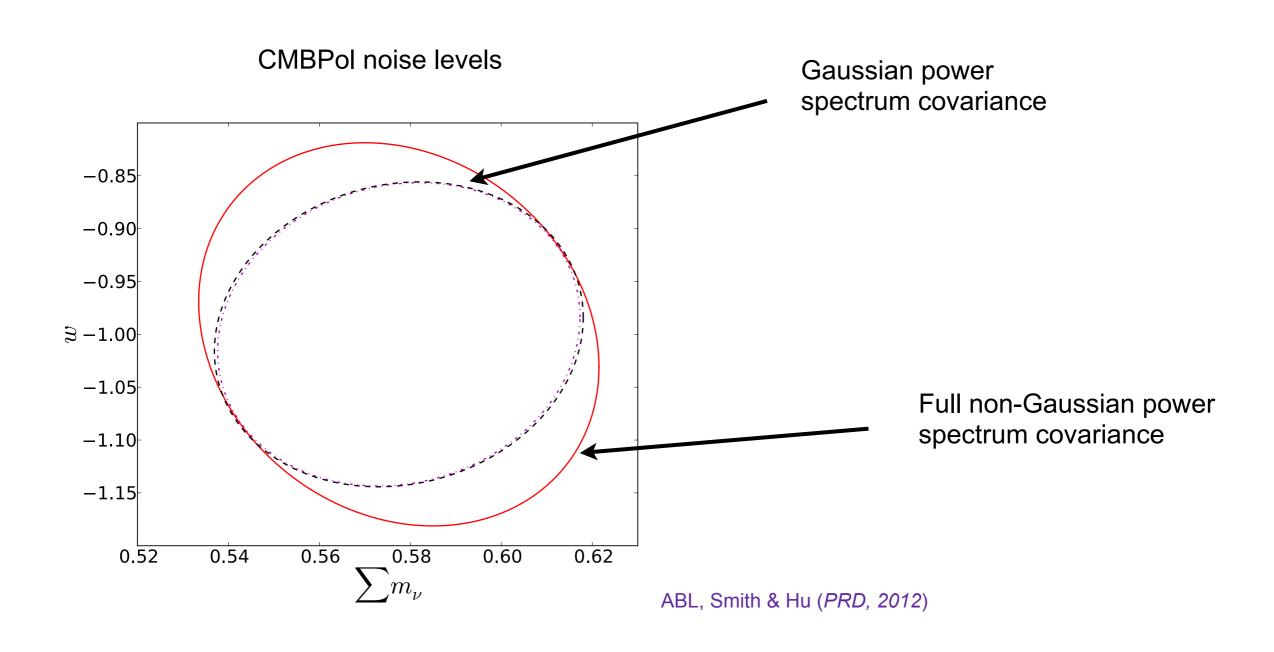
$$cov(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ}) = cov^G(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ}) + cov^{NG}(C_{\ell_1}^{XY}, C_{\ell_2}^{WZ})$$



$$\operatorname{Cov}_{\ell_1 \ell_2}^{XY,WZ} = \frac{1}{2\ell_1 + 1} \left[C_{\ell_1}^{XW} C_{\ell_1}^{YZ} + C_{\ell_1}^{XZ} C_{\ell_1}^{YW} \right] \delta_{\ell_1,\ell_2} + \left[\frac{\partial C_{\ell_1}^{XY}}{\partial C_{\ell}^{\phi\phi}} \operatorname{Cov}_{\ell\ell}^{\phi\phi,\phi\phi} \frac{\partial C_{\ell_2}^{WZ}}{\partial C_{\ell}^{\phi\phi}} \right]$$

$$\operatorname{Cov}_{\ell_{1}\ell_{2}}^{BB,BB} = \frac{2}{2\ell_{1}+1} \left(C_{\ell_{1}}^{BB}\right)^{2} \delta_{\ell_{1},\ell_{2}} \\
+ \sum_{\ell} \left(\frac{\partial C_{\ell_{1}}^{BB}}{\partial C_{\ell}^{\tilde{E}\tilde{E}}} \operatorname{Cov}_{\ell\ell}^{\tilde{E}\tilde{E},\tilde{E}\tilde{E}} \frac{\partial C_{\ell_{2}}^{BB}}{\partial C_{\ell}^{\tilde{E}\tilde{E}}}\right) \\
+ \sum_{\ell} \left(\frac{\partial C_{\ell_{1}}^{BB}}{\partial C_{\ell}^{\phi\phi}} \operatorname{Cov}_{\ell\ell}^{\phi\phi,\phi\phi} \frac{\partial C_{\ell_{2}}^{BB}}{\partial C_{\ell}^{\phi\phi}}\right)$$

ABL, Smith & Hu (*PRD*, 2012)



Significant effect for a post-Planck experiment

Impact of CMB lensing

$$\Theta[\hat{\mathbf{n}}] = \tilde{\Theta}[\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}})] \longrightarrow$$

$$\Theta(\mathbf{\hat{n}}) = \tilde{\Theta}(\mathbf{\hat{n}}) + \nabla_i \phi(\mathbf{\hat{n}}) \nabla^i \tilde{\Theta}(\mathbf{\hat{n}}) + \cdots$$

Temperature and gradient become correlated

$$\langle t_{\ell m} t_{\ell' m'}^* \rangle_{|CMB} = C_{\ell} + \sum_{\lambda \mu} F_{mm'\mu}^{\ell \ell' \lambda} \phi_{\lambda \mu}$$

CMB lensing induces mode coupling

$$C_{\ell} \sim (1 - \alpha_{\ell})\tilde{C}_{\ell} + \sum_{\ell_1 \ell_2} C_{\ell_1}^{\phi \phi} \tilde{C}_{\ell_2} F_{\ell \ell_1 \ell_2}$$

- Modifies the shape of observed power spectra
- Creates non-Gaussian terms in the spectra covariance
 ABL, Smith & Hu (PRD, 2012)

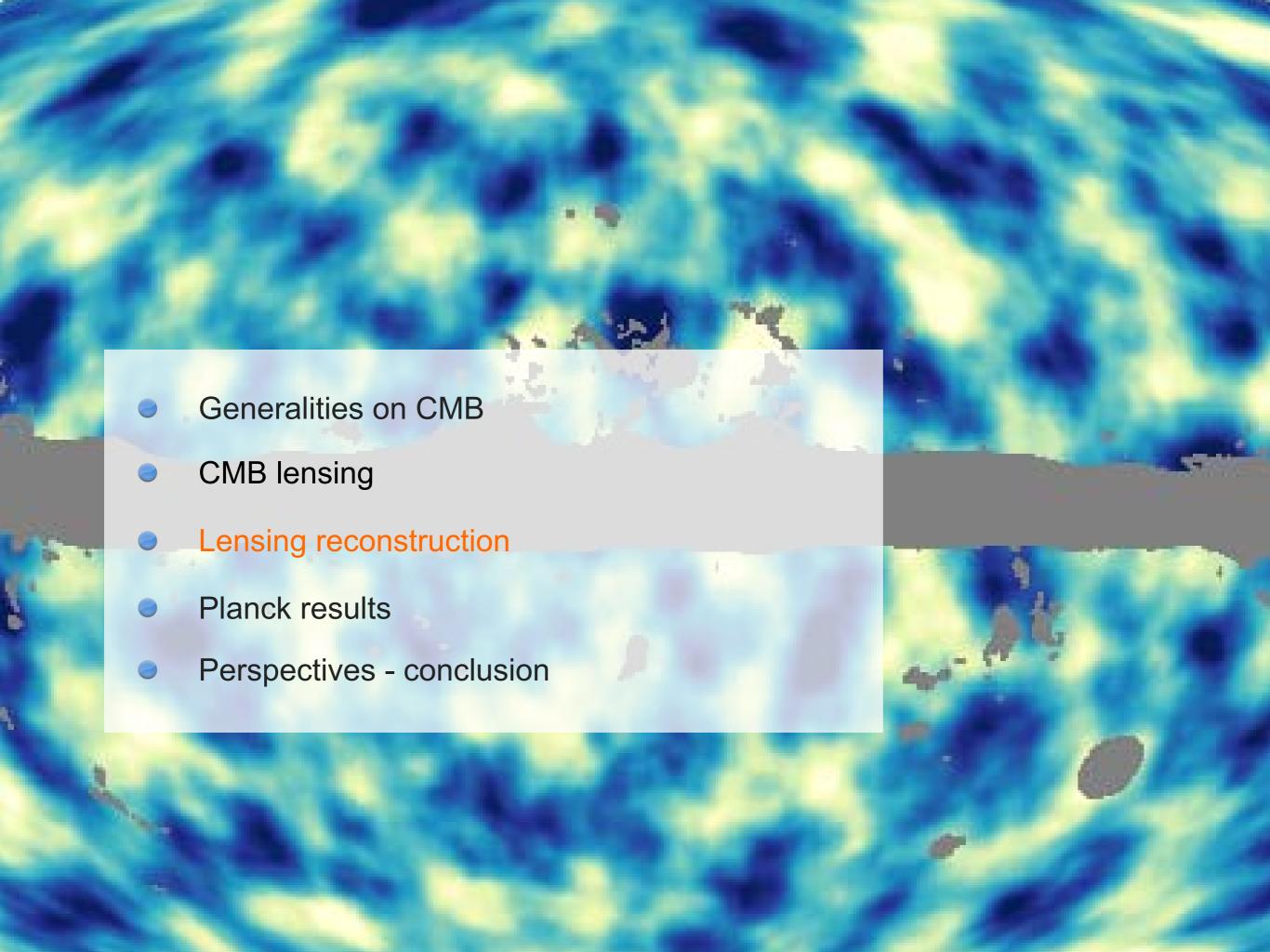
«Statistical inversion»

$$\langle \Theta \nabla \Theta \rangle \Rightarrow \phi$$

 Allows the reconstruction of the lensing potential and its power spectrum

Lensing information is encoded in anisotropies spectra

Reconstruction provides direct measurement of the lensing potential



Lensing reconstruction

Optimal quadratic estimator Okamoto & Hu (2003)

$$\hat{\phi}_L^M \propto A_L \sum_{l_1 m_1} \sum_{l_2 m_2} (-1)^M \begin{pmatrix} l_1 & l_2 & L \\ m_1 & m_2 & -M \end{pmatrix} \frac{(\tilde{C}_{\ell_2} F_{\ell_1 L \ell_2} + \tilde{C}_{\ell_1} F_{\ell_2 L \ell_1})^2}{2C_{\ell_1}^{\text{tot}} C_{\ell_2}^{\text{tot}}} \Theta_{m_1}^{l_1} \Theta_{m_2}^{l_2}$$

Harmonic space

$$\hat{\phi}_{L}^{M} \propto A_{L} \int d\hat{\mathbf{n}} Y_{L}^{M*} \left(\sum_{\ell_{1}m_{1}} \frac{1}{C_{\ell_{1}}^{\text{tot}}} \Theta_{\ell_{1}}^{m_{1}} Y_{\ell_{1}}^{m_{1}} \right) \nabla \left(\sum_{\ell_{2}m_{2}} \frac{\tilde{C}_{\ell_{2}}}{C_{\ell_{2}}^{\text{tot}}} \Theta_{\ell_{2}}^{m_{2}} Y_{\ell_{2}}^{m_{2}} \right)$$

Real space

Lensing reconstruction

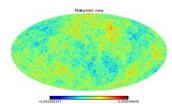
Optimal quadratic estimator Okamoto & Hu (2003)

$$\hat{\phi}_L^M \propto A_L \sum_{l_1 m_1} \sum_{l_2 m_2} (-1)^M \begin{pmatrix} l_1 & l_2 & L \\ m_1 & m_2 & -M \end{pmatrix} \frac{(\tilde{C}_{\ell_2} F_{\ell_1 L \ell_2} + \tilde{C}_{\ell_1} F_{\ell_2 L \ell_1})^2}{2C_{\ell_1}^{\text{tot}} C_{\ell_2}^{\text{tot}}} \Theta_{m_1}^{l_1} \Theta_{m_2}^{l_2}$$

Harmonic space

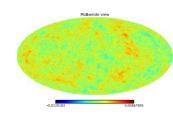
$$\hat{\phi}_{L}^{M} \propto A_{L} \int d\mathbf{\hat{n}} Y_{L}^{M*} \left(\sum_{\ell_{1} m_{1}} \frac{1}{C_{\ell_{1}}^{\text{tot}}} \Theta_{\ell_{1}}^{m_{1}} Y_{\ell_{1}}^{m_{1}} \right) \nabla \left(\sum_{\ell_{2} m_{2}} \frac{\tilde{C}_{\ell_{2}}}{C_{\ell_{2}}^{\text{tot}}} \Theta_{\ell_{2}}^{m_{2}} Y_{\ell_{2}}^{m_{2}} \right)$$

Real space



- Consider the observed map
- Two different filters
- Take the gradient of the second filtered map
- Multiply the two
- Extract the gradient component

Here is the lensing field!



Lensing reconstruction

$$\mathbf{d} = \nabla \phi + \nabla \times \psi$$

Gradient of the lensing potential

Curl component **null** for lensing

Mean of the estimator

$$\langle \hat{\phi}_{lm}^g \rangle_{\text{lens}} = A_l \ \phi_{lm} + \delta_{l0} X$$
 $\langle \hat{\phi}_{lm}^c \rangle_{\text{lens}} = 0$

Covariance of the estimator

$$\langle \hat{\phi}_{lm} \hat{\phi}_{lm}^* \rangle = A_l^2 \sum_{\ell_i m_i} \begin{pmatrix} \ell_1 & \ell_2 & l \\ m_1 & m_2 & -m \end{pmatrix} \begin{pmatrix} \ell_3 & \ell_4 & l \\ m_3 & m_4 & -m \end{pmatrix} g_{\ell_1 \ell_2}(l) g_{\ell_3 \ell_4}(l) \langle \Theta_{\ell_1}^{m_1} \Theta_{\ell_2}^{m_2} \Theta_{\ell_3}^{m_3} \Theta_{\ell_4}^{m_4} \rangle$$

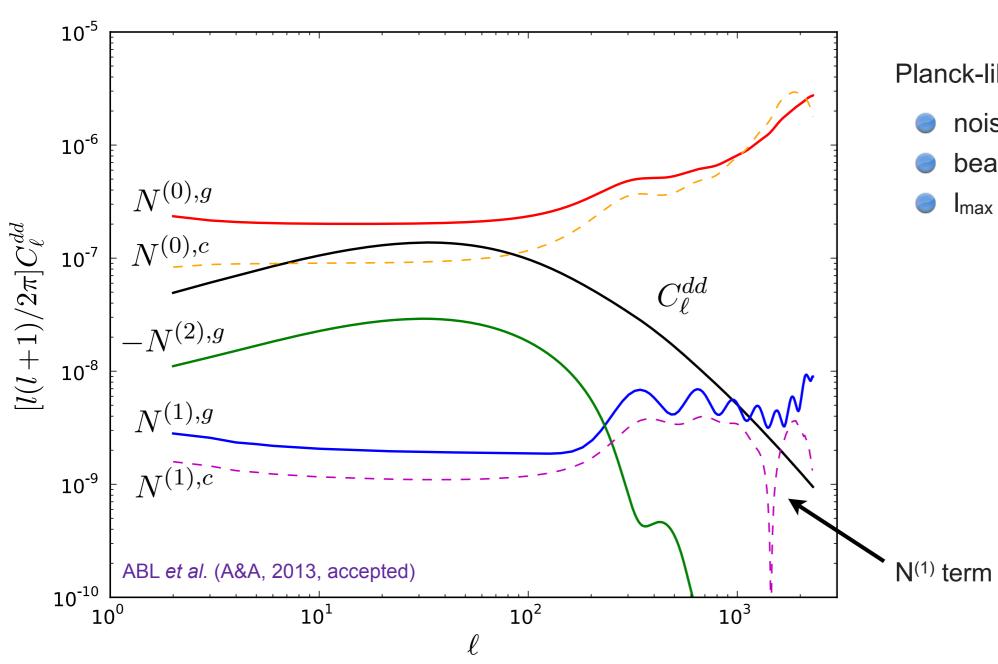
Summation of the trispectrum (4-points correlation function)

$$\langle \hat{\phi}_L^M \hat{\phi}_L^{M*} \rangle^G = C_L^{\phi\phi} + N_L^{(0,G)} + N_L^{(1,G)} + N_L^{(2,G)} + \cdots$$
 Gaussian noise
$$\text{Kesden et al. (2003), Hanson et al. (2011), ABL et al. (A&A, 2013, accepted)}$$

$$\langle \hat{\phi}_L^M \hat{\phi}_L^{M*} \rangle^C = N_L^{(0,C)} + N_L^{(1,C)} + \cdots$$

Lensing potential and biases

$$\langle \hat{\phi}_L^M \hat{\phi}_L^{M*} \rangle^G = C_L^{\phi\phi} + N_L^{(0,G)} + N_L^{(1,G)} + N_L^{(2,G)} + \cdots$$



Planck-like specifications

noise: 50 μK. arcmin

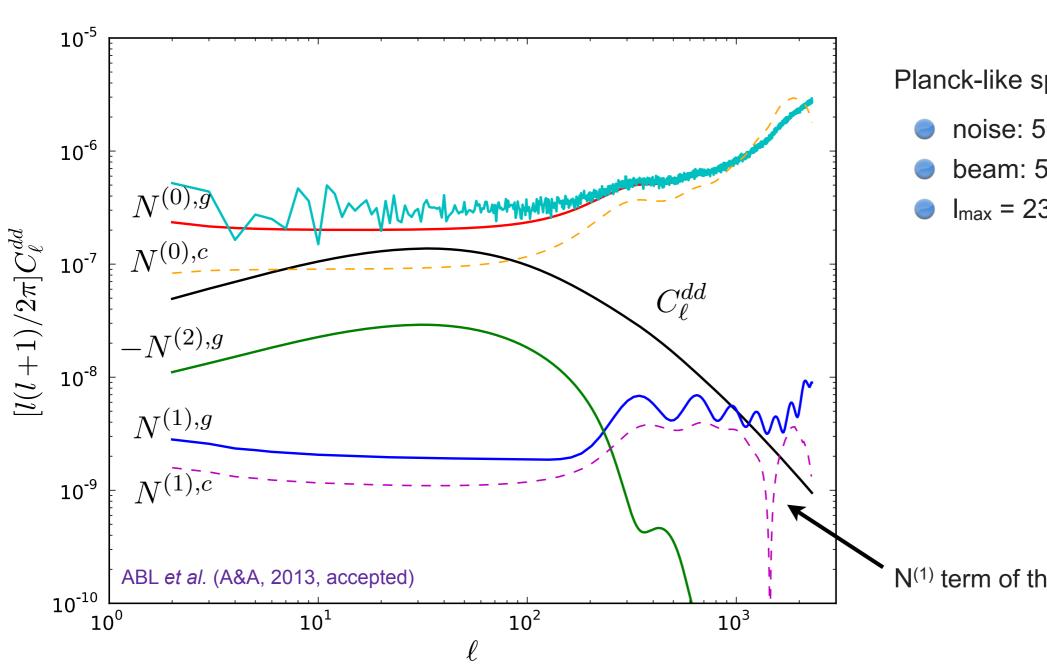
beam: 5 arcmin

 $I_{max} = 2300$

 $N^{(1)}$ term of the curl component

Lensing potential and biases

$$\langle \hat{\phi}_L^M \hat{\phi}_L^{M*} \rangle^G = C_L^{\phi\phi} + N_L^{(0,G)} + N_L^{(1,G)} + N_L^{(2,G)} + \cdots$$



Planck-like specifications

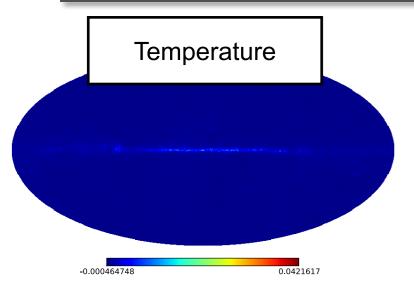
noise: 50 μK. arcmin

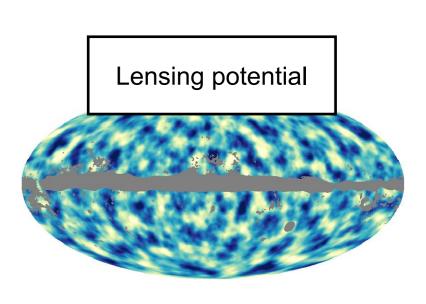
beam: 5 arcmin

 $I_{max} = 2300$

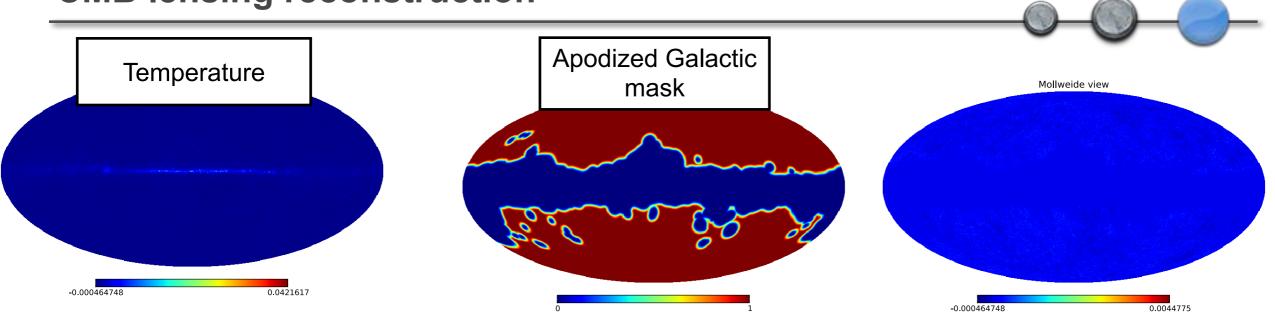
 $N^{(1)}$ term of the curl component

CMB lensing reconstruction with masks

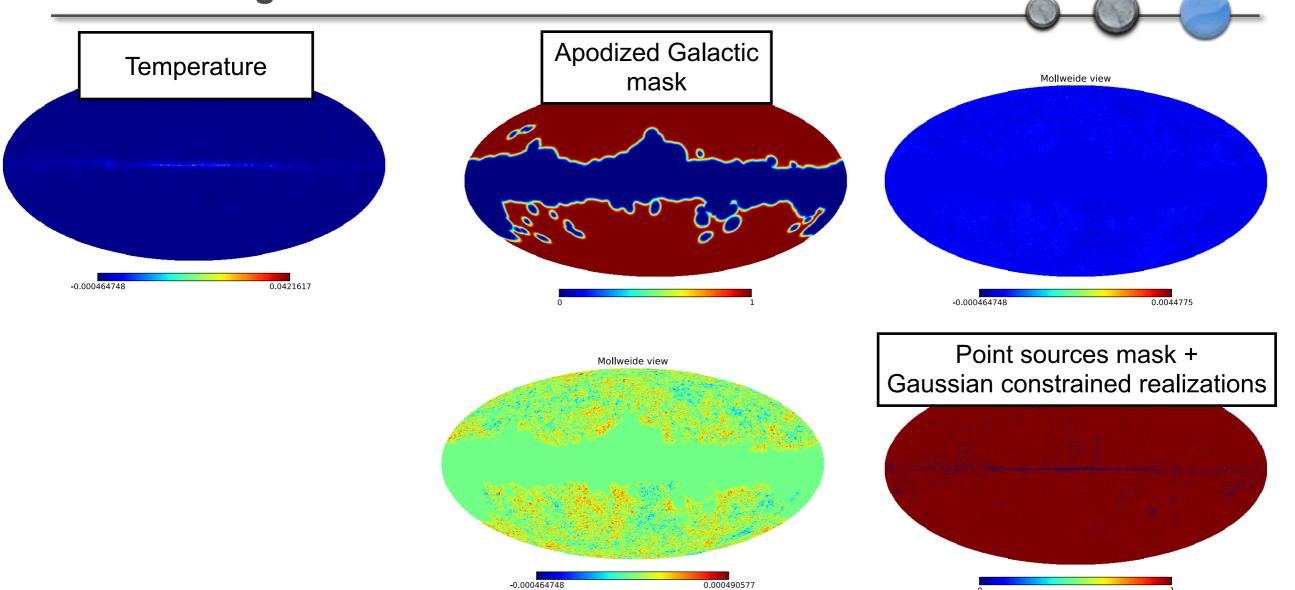




CMB lensing reconstruction



CMB lensing reconstruction

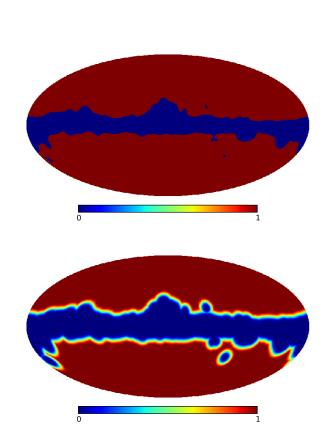


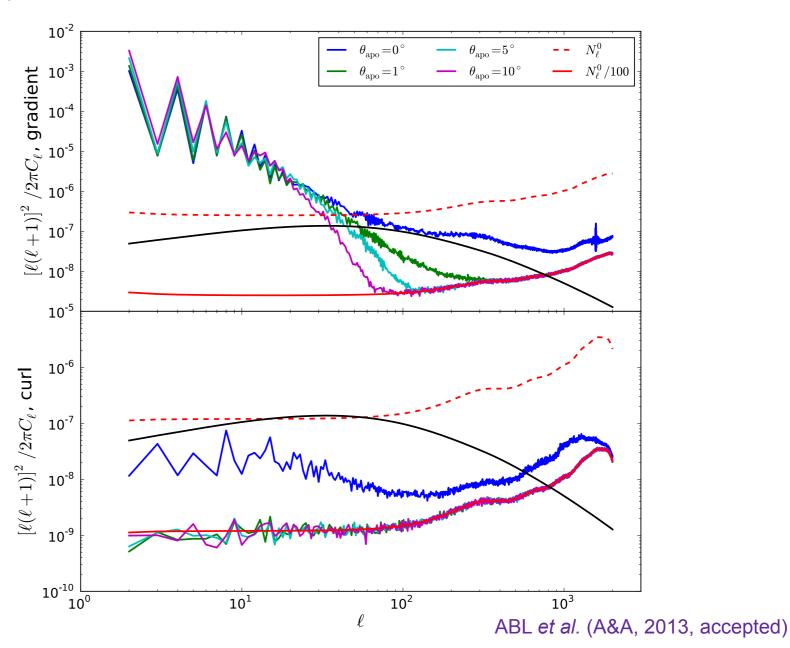
CMB lensing reconstruction Apodized Galactic Temperature mask Mollweide view Point sources mask + Mollweide view Filtering Gaussian constrained realizations Mollweide view T_1 inverse-variance 0.000490577 Mollweide view T_2 Wiener

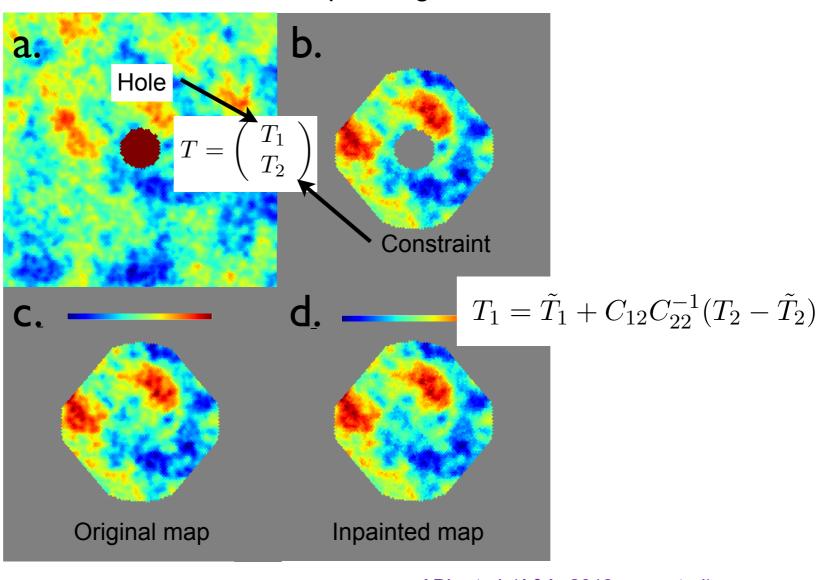
CMB lensing reconstruction **Apodized Galactic** Temperature mask Mollweide view Point sources mask + Mollweide view Gaussian constrained realizations Filtering Mollweide view T_1 inverse-variance Mollweide view T_2 Estimation Lensing potential Wiener $\hat{\phi} \propto \nabla \cdot (T_1 \nabla T_2)$

Treatment of masks

- Galaxy
 - Mask creates a bias in the estimator: mask mean field
 - Apodized mask
 - Apodization reduces mode couplings
 - Mean-field can be efficiently substracted





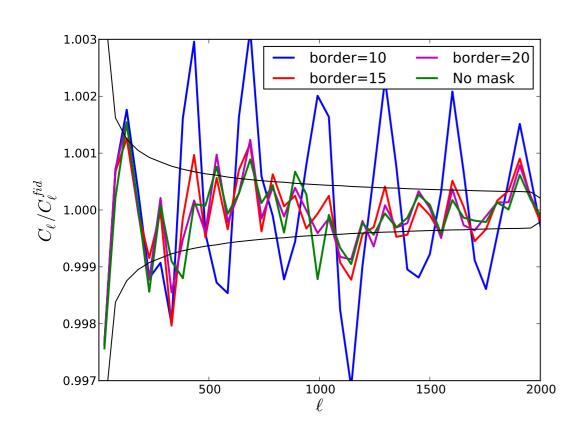


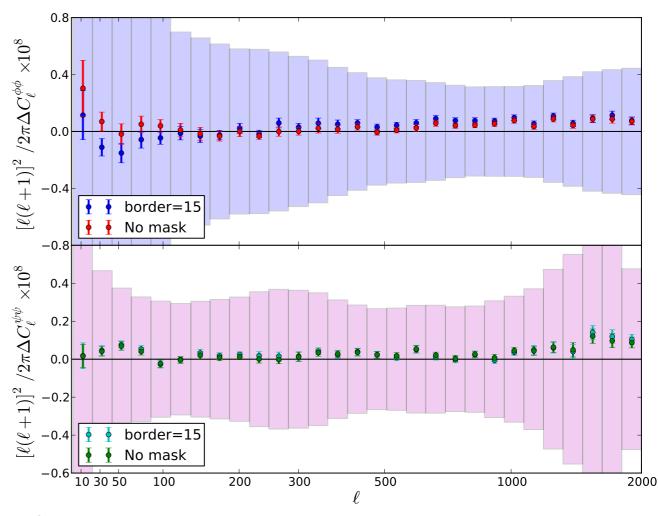
ABL et al. (A&A, 2013, accepted)

Treatment of masks

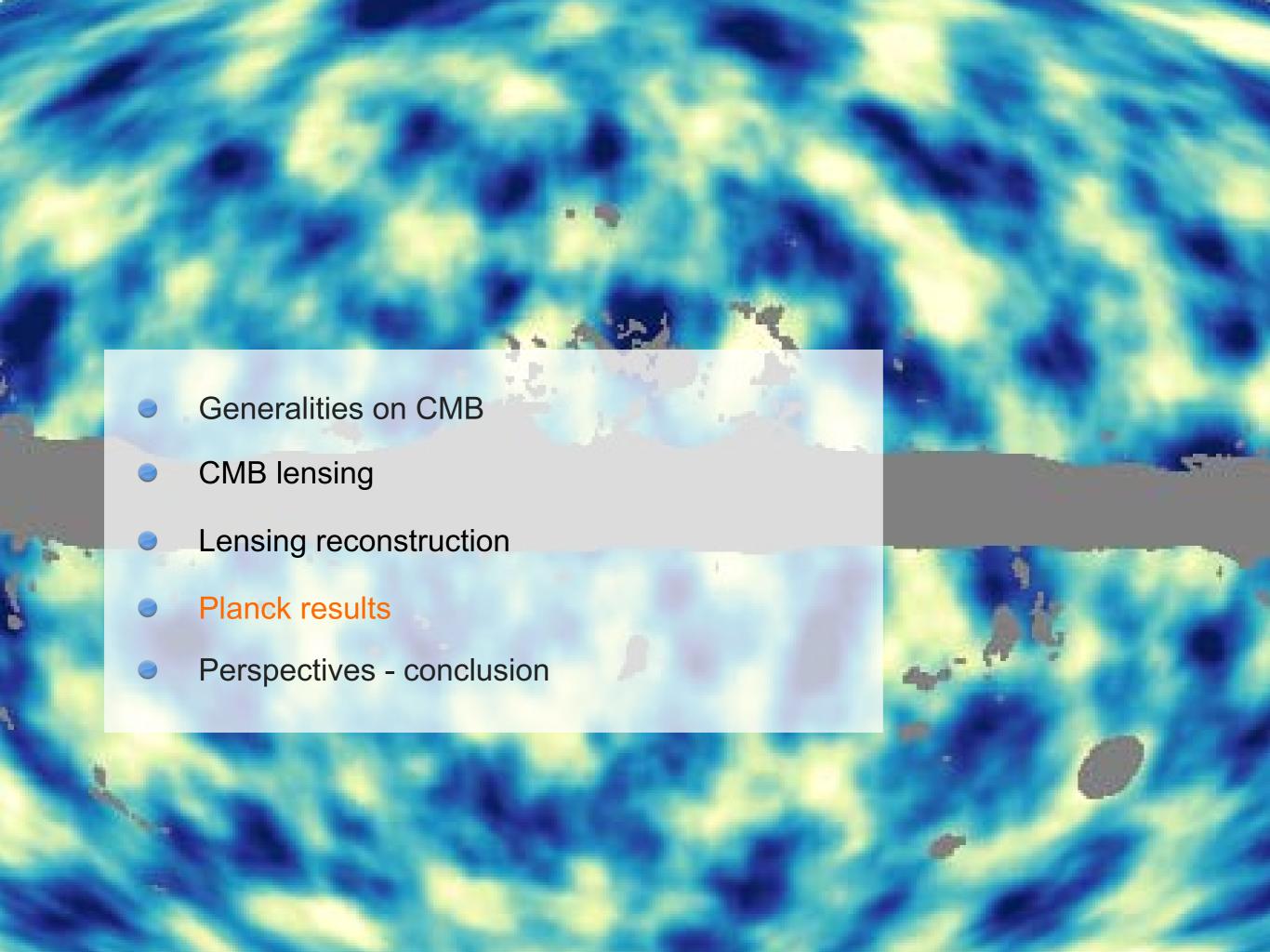
Point sources

- Fill in missing data with realistic simulated data
- Neighboring pixels used to generate constrained Gaussian realizations
- Two-point statistic is restored (i.e. power spectrum)
- Creates no bias in lensing estimator

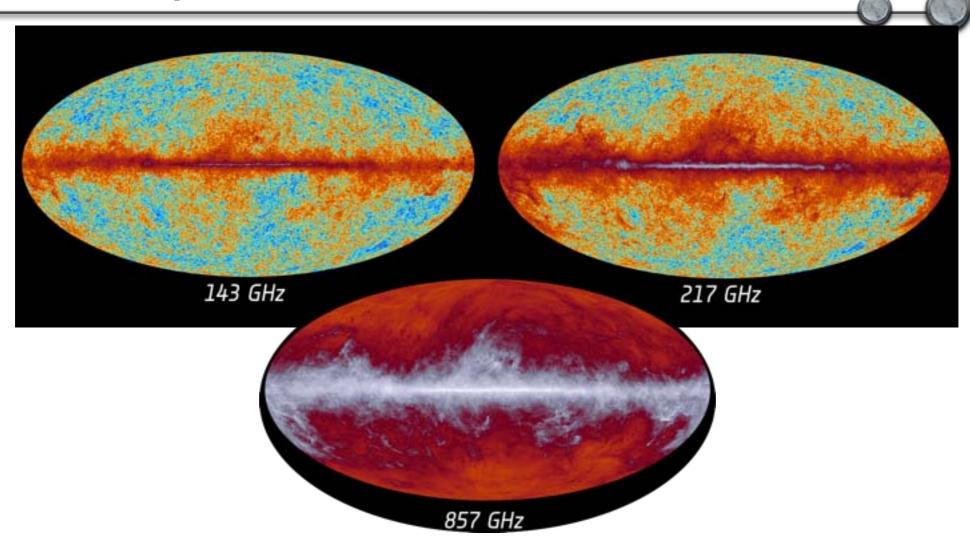




ABL et al. (A&A, 2013, accepted)



Fiducial data map



- Minimum-variance combination of 143GHZ & 217GHz
- 857 GHz map used a template for dust cleaning
- 30% Galactic mask + CO + point sources
- 5° apodization (for lensing power spectrum estimation)

Some technical details

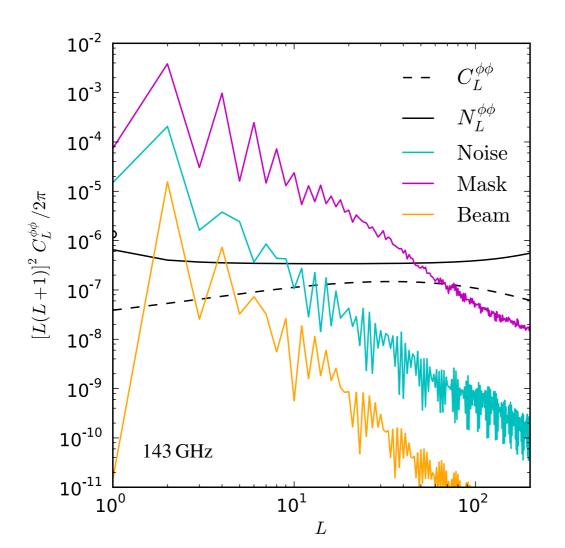
$$\hat{\phi}_{LM}^{x} = \frac{1}{\mathcal{R}_{L}^{x\phi}} \left(\bar{x}_{LM} - \bar{x}_{LM}^{MF} \right).$$

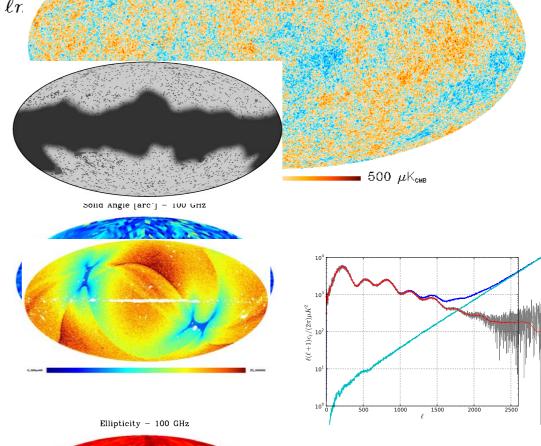
$$\mathcal{R}_{L}^{x\phi,(1)(2)} = \frac{1}{(2L+1)} \sum_{\ell_1 \ell_2} \frac{1}{2} W_{\ell_1 \ell_2 L}^x W_{\ell_1 \ell_2 L}^{\phi} F_{\ell_1}^{(1)} F_{\ell_2}^{(2)}.$$

$$\bar{x}_{LM} = \frac{1}{2} \sum_{\ell_1 m_1, \ell_2 m_2} (-1)^M \begin{pmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & -M \end{pmatrix} W_{\ell_1 \ell_2 L}^x \bar{T}_{\ell_1 m_1}^{(1)} \bar{T}_{\ell_2 m_2}^{(2)}.$$

$$\bar{x}_{LM}^{MF} = \frac{1}{2} \sum_{\ell_1 m_1, \ell_2 m_2} (-1)^{\ell_1}$$

$$\bar{T}_{\ell m} = [S+N]^{-1} T_{\ell m}$$





Some technical details

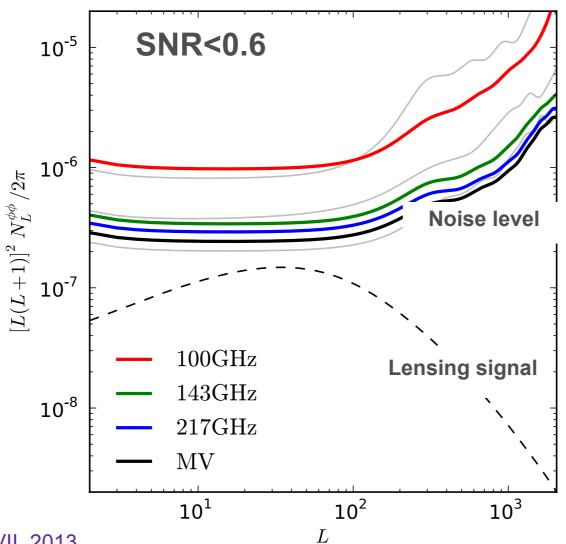
$$\hat{\phi}_{LM}^{x} = \frac{1}{\mathcal{R}_{L}^{x\phi}} \left(\bar{x}_{LM} - \bar{x}_{LM}^{MF} \right).$$

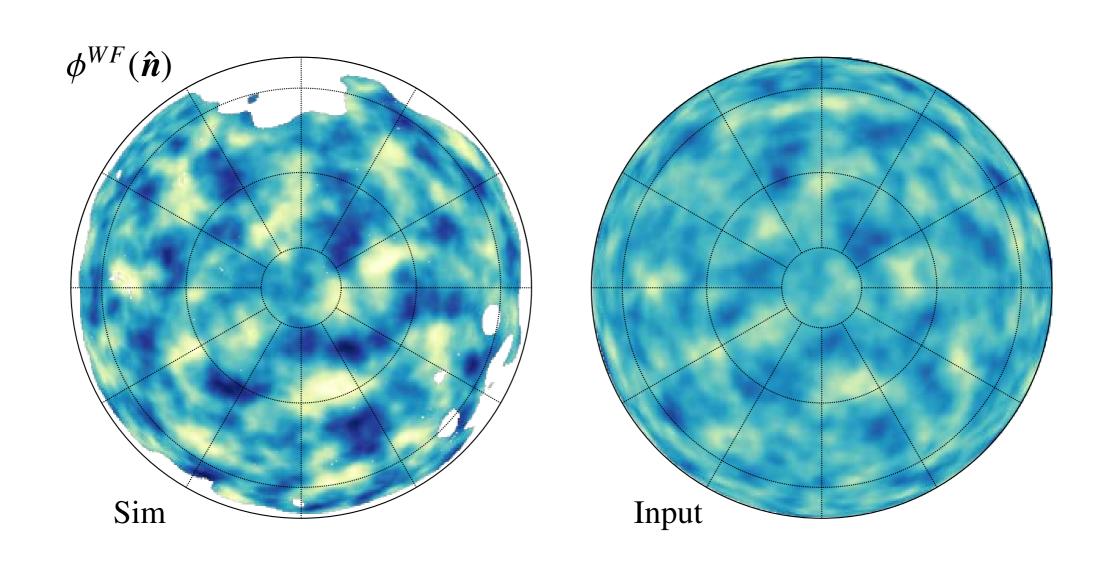
$$\mathcal{R}_{L}^{x\phi,(1)(2)} = \frac{1}{(2L+1)} \sum_{\ell_1 \ell_2} \frac{1}{2} W_{\ell_1 \ell_2 L}^x W_{\ell_1 \ell_2 L}^\phi F_{\ell_1}^{(1)} F_{\ell_2}^{(2)}.$$

$$\bar{x}_{LM} = \frac{1}{2} \sum_{\ell_1 m_1, \ell_2 m_2} (-1)^M \begin{pmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & -M \end{pmatrix} W_{\ell_1 \ell_2 L}^x \bar{T}_{\ell_1 m_1}^{(1)} \bar{T}_{\ell_2 m_2}^{(2)}.$$

$$\bar{x}_{LM}^{MF} = \frac{1}{2} \sum_{\ell_1 m_1, \ell_2 m_2} (-1)^M \begin{pmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & -M \end{pmatrix} W_{\ell_1 \ell_2 L}^{x} \langle \bar{T}_{\ell_1 m_1}^{(1)} \bar{T}_{\ell_2 m_2}^{(2)} \rangle.$$

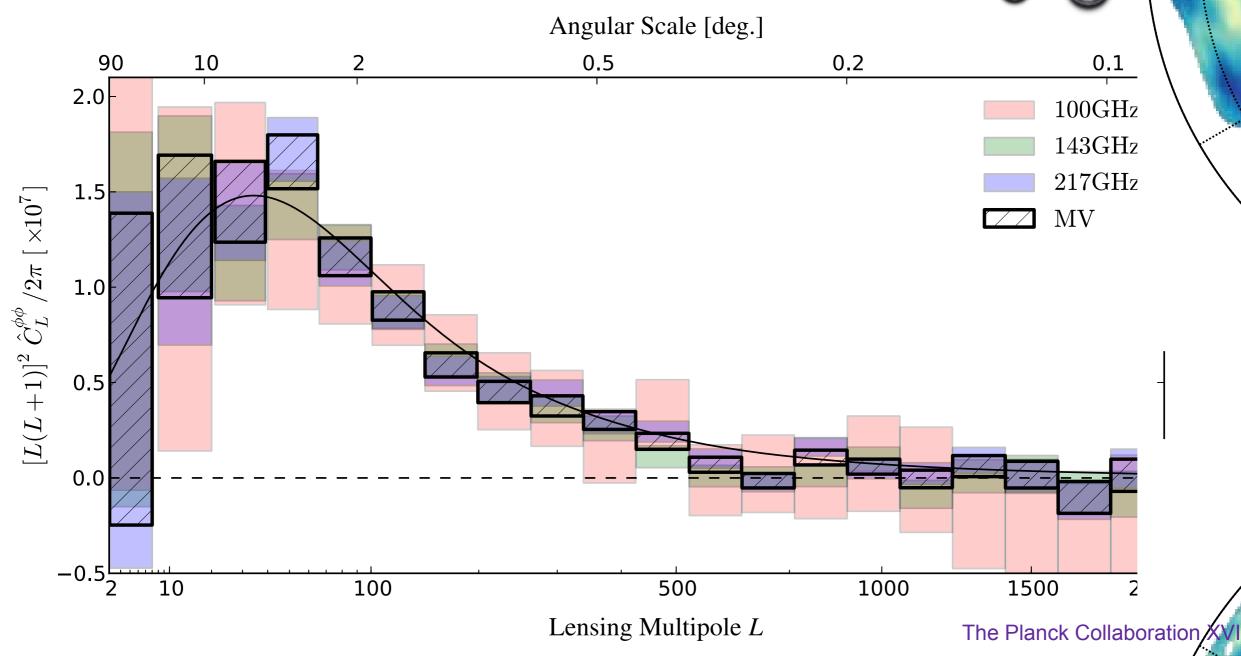
$$\bar{T}_{\ell m} = [S+N]^{-1} T_{\ell m} \approx [C_{\ell}^{TT} + C_{\ell}^{NN}]^{-1} T_{\ell m} = F_{\ell} T_{\ell m}$$





Reconstruction on a realistic Planck simulation

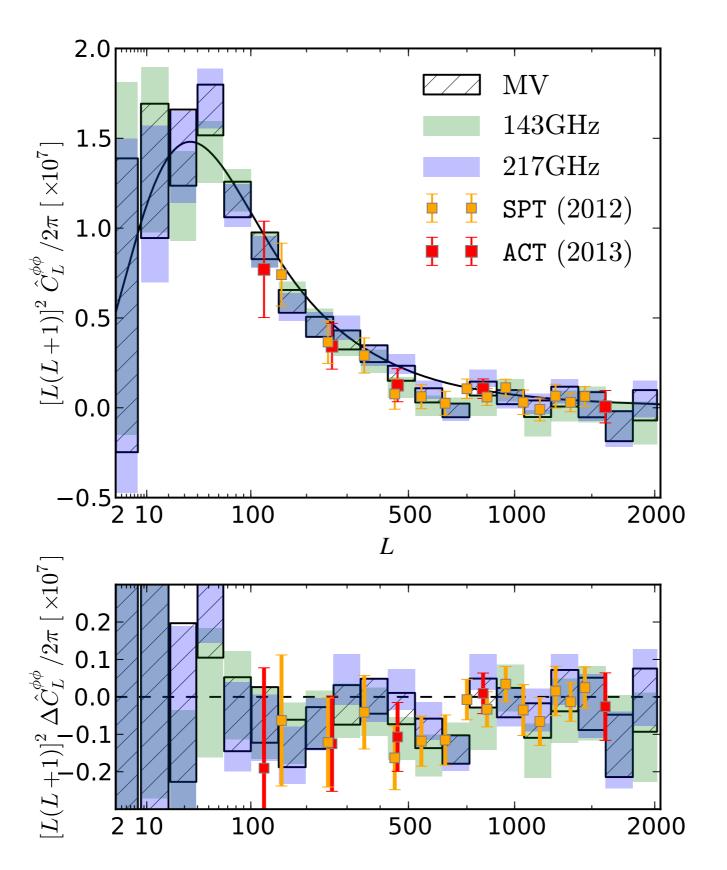
Cosmological constraints



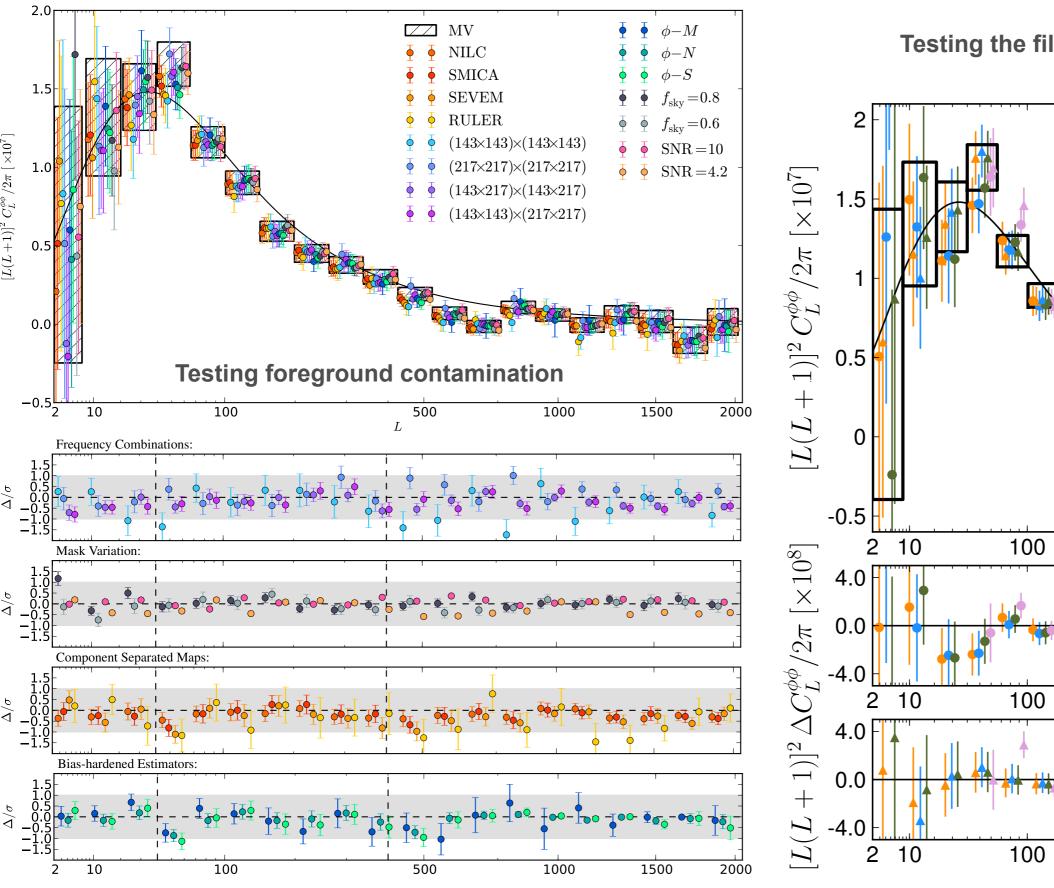
- Agreement between 3 frequencies
- Agreement with the prediction
- New cosmological constraints

$$\hat{A}_{40\to 400} = 0.94 \pm 0.04$$

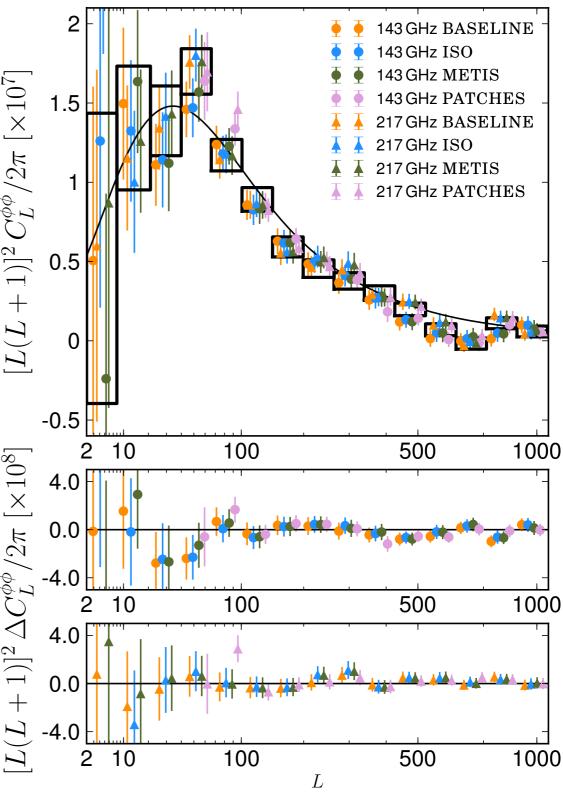
Comparison to ACT and SPT



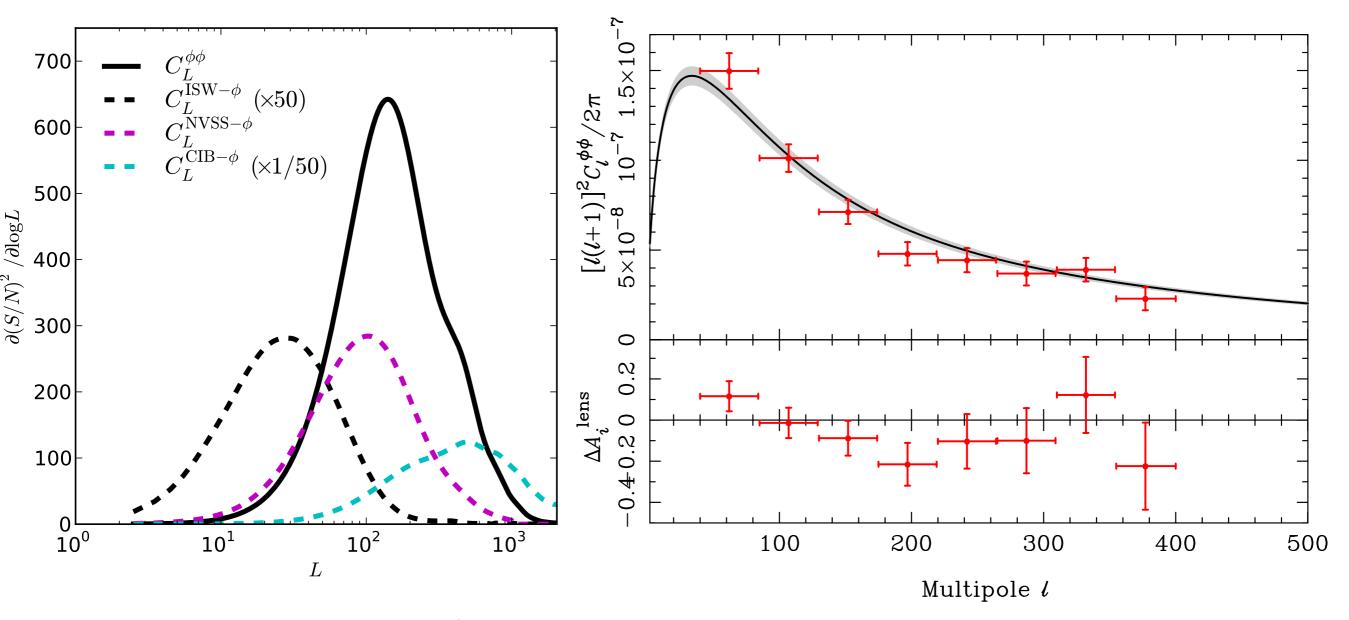
Robustness



Testing the filter & implementation



Lensing likelihood

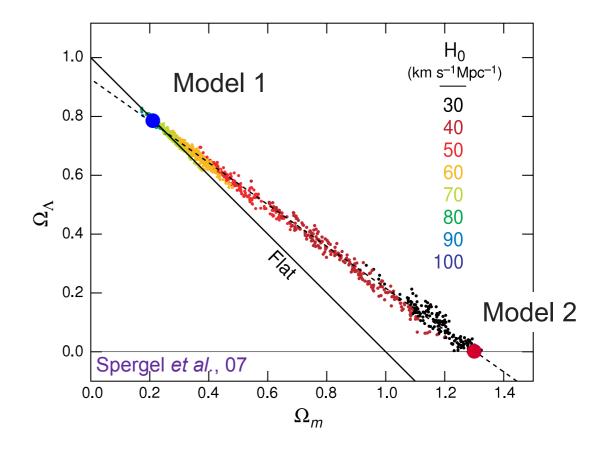


The Planck Collaboration XVII, 2013

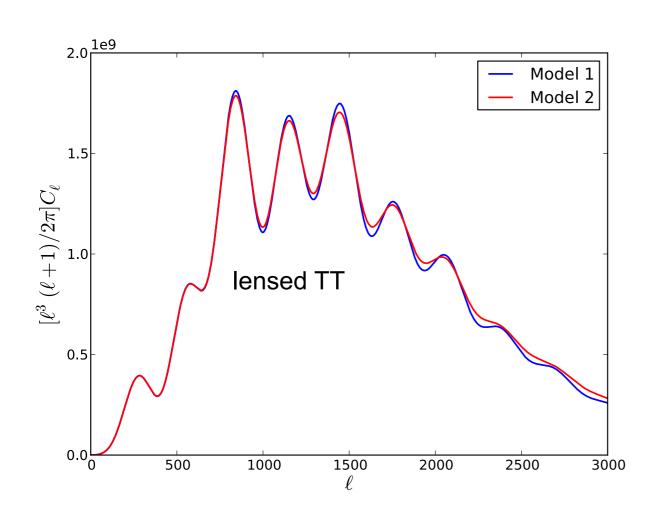
The Planck Collaboration XVI, 2013

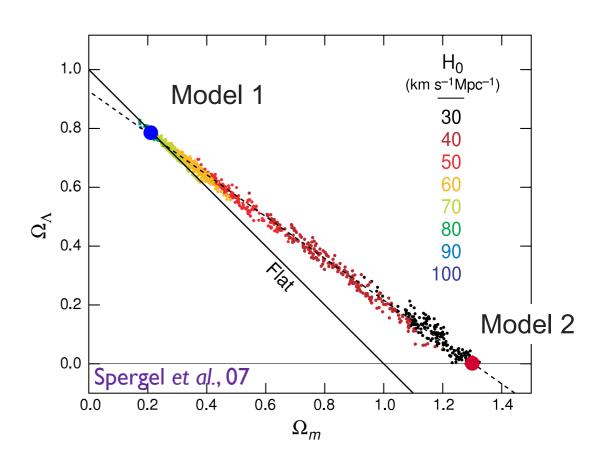
«Lensing breaks diameter degeneracy»





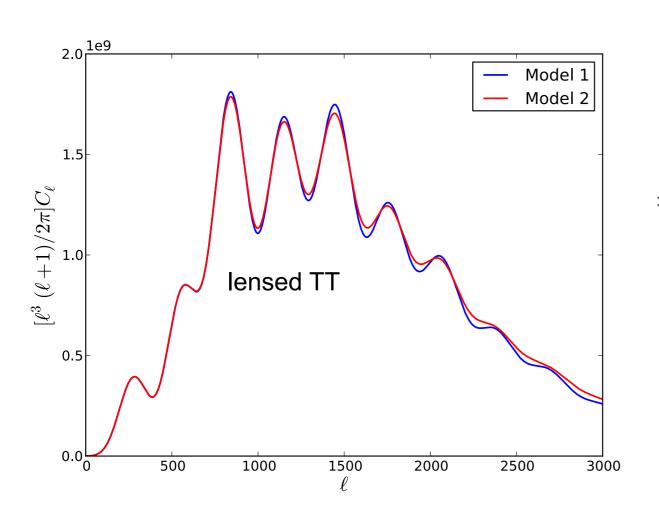
«Lensing breaks diameter degeneracy»

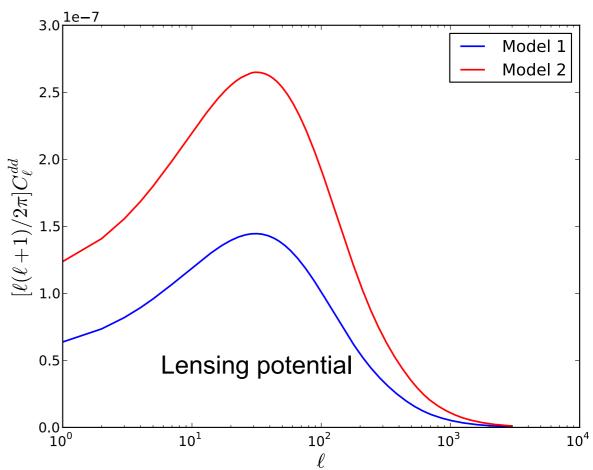




If lensed power spectra are different, that's because of lensing potential

«Lensing breaks diameter degeneracies»

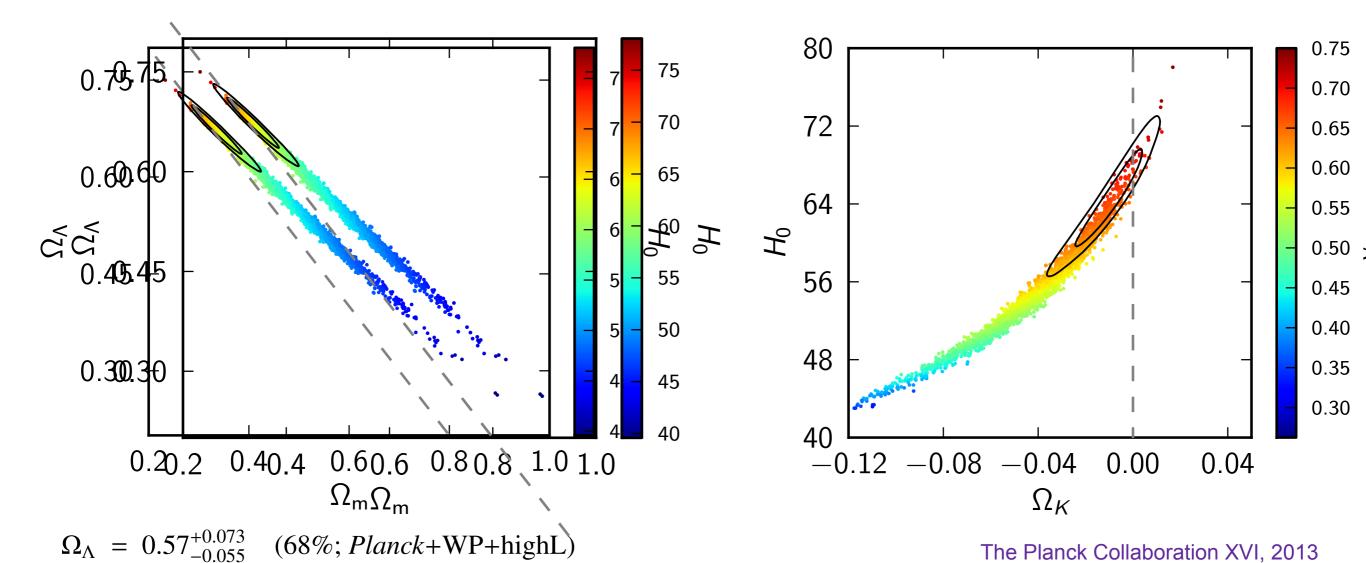




«Lensing breaks diameter degeneracies»

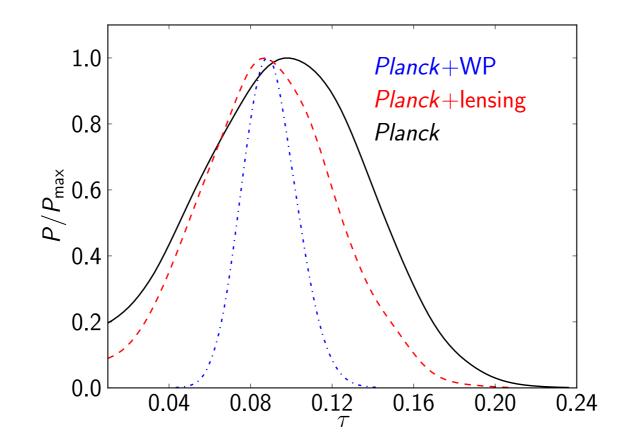
(68%; *Planck*+lensing+WP+highL).

 $\Omega_{\Lambda} = 0.67^{+0.027}_{-0.023}$



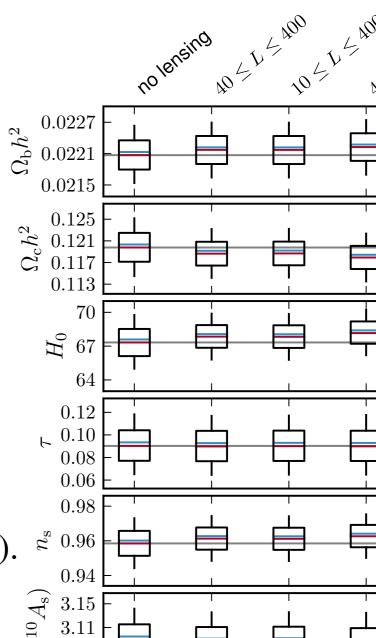
$$100\Omega_K = -4.2^{+4.3}_{-4.8}$$
 (95%; $Planck+WP+highL$);
 $100\Omega_K = -1.0^{+1.8}_{-1.9}$ (95%; $Planck+lensing$
 $+ WP+highL$).

- Reionization
 - Lensing provides «Planck only» constraint
 - Cross-check of polarization

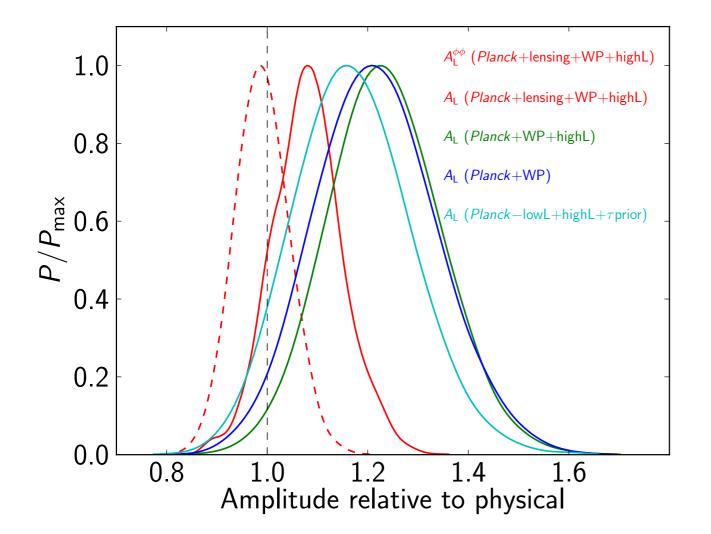


 $\tau = 0.097 \pm 0.038$ (68%; *Planck*)

 $\tau = 0.089 \pm 0.032$ (68%; *Planck*+lensing).

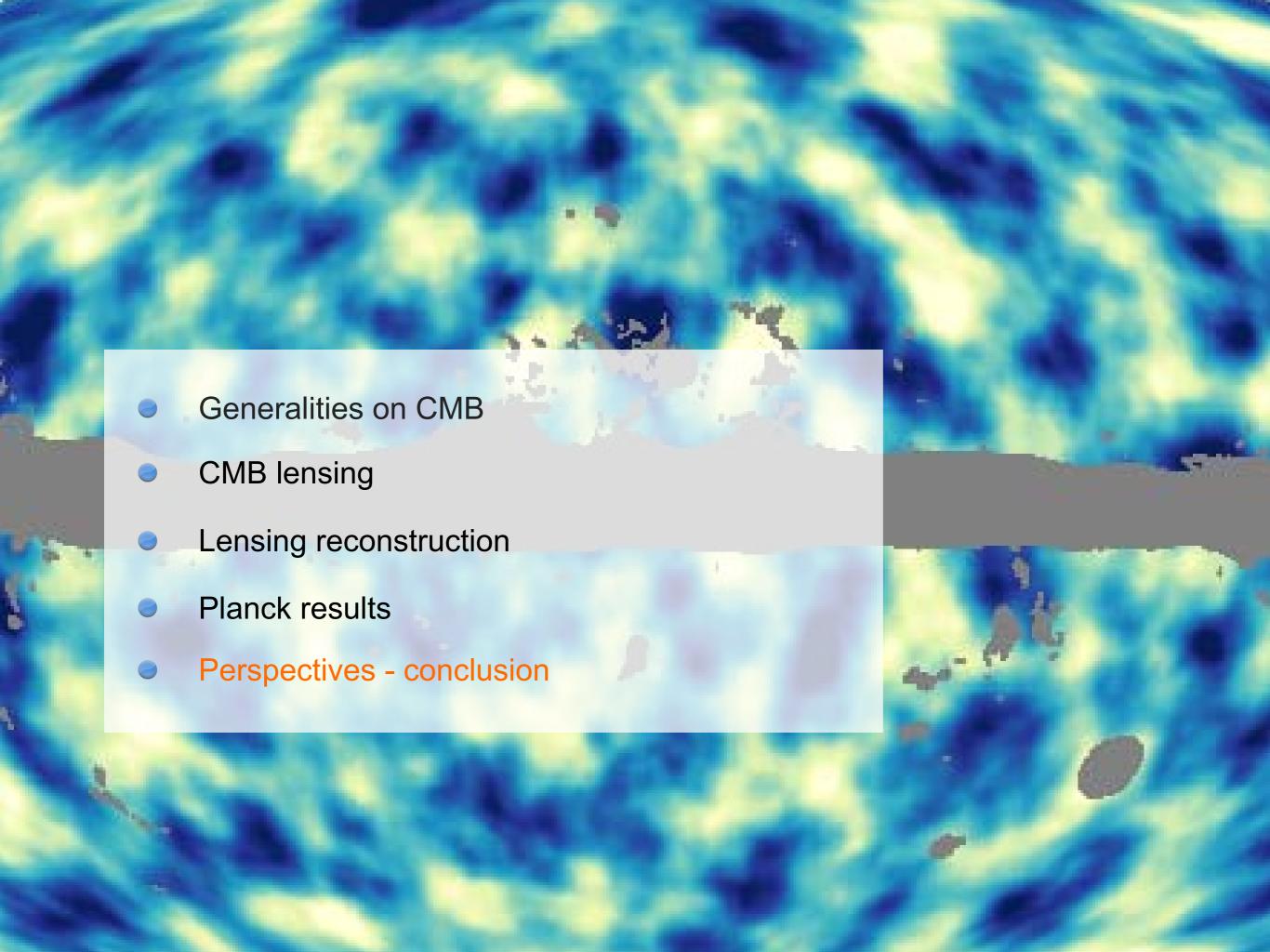


- Sum of neutrino masses
 - Mild tension : constraint weaker than expected!
 - Temperature power spectra: more lensing = smaller mass
 - Reconstruction: less lensing = larger mass

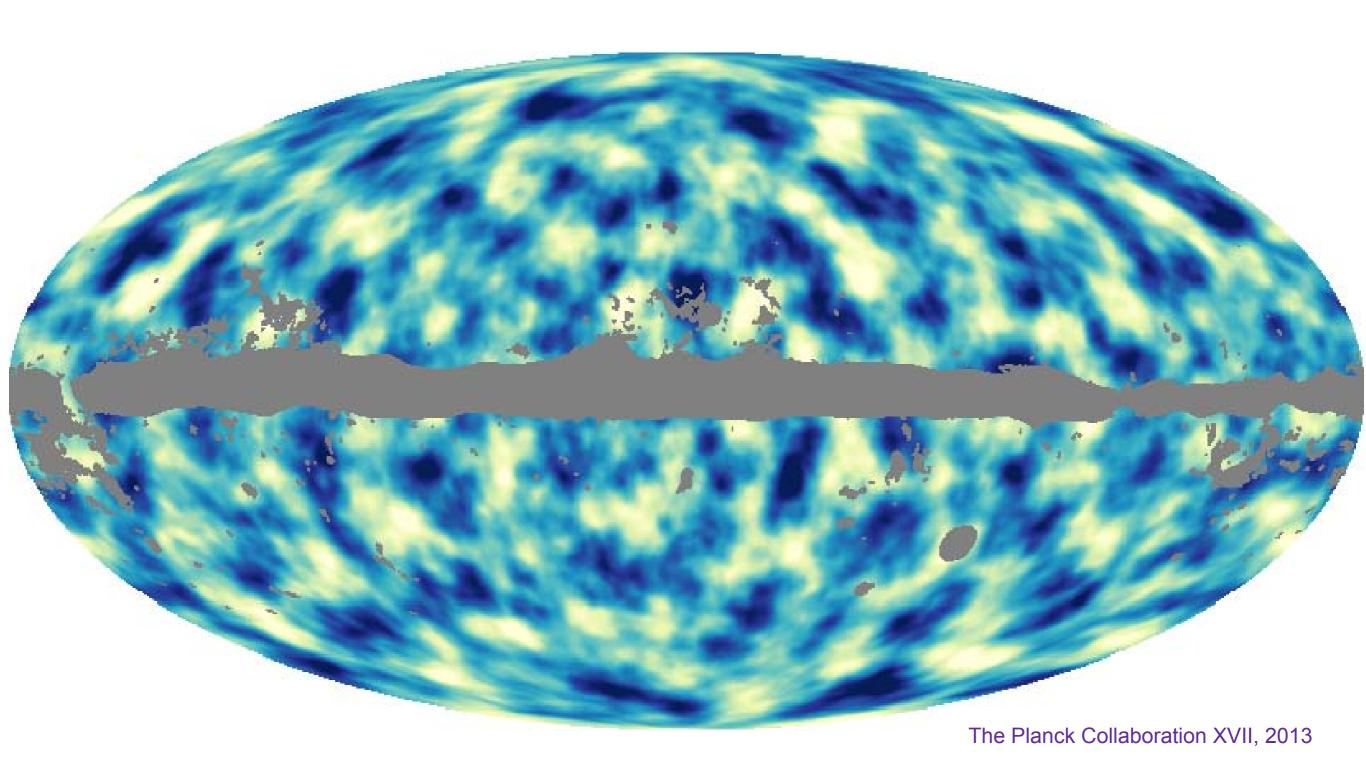


$$\sum m_{\nu} < 0.66 \,\text{eV}, \quad (95\%; \, \textit{Planck} + \text{WP+highL}),$$

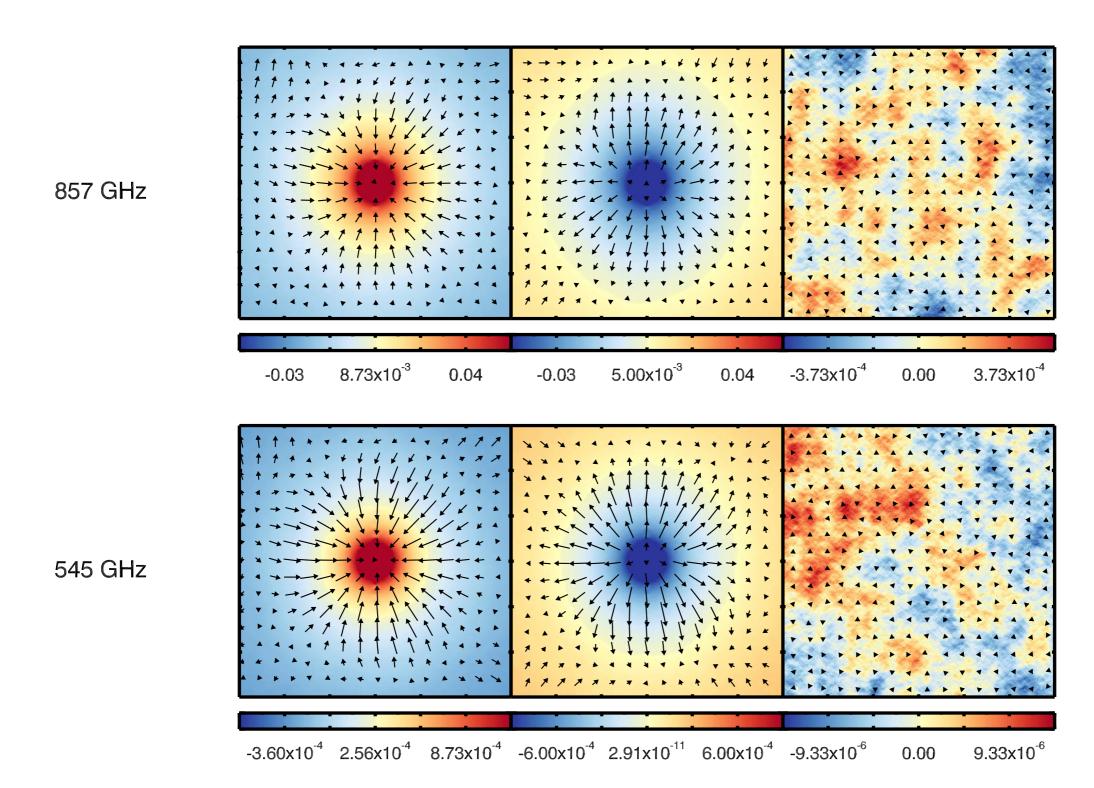
$$\sum m_{\nu} < 0.85 \,\text{eV}, \quad (95\%; \, \textit{Planck} + \text{lensing} + \text{WP+highL}),$$



The matter in the Universe as seen by Planck



The lensing map traces the matter distribution up to the last scattering surface



The Planck Collaboration XVIII, 2013

Cross-correlations

$$C_{\ell}^{XY} \sim \int_{0}^{\chi_*} d\chi w^X(\chi) w^Y(\chi) P(\ell/\chi, \chi)$$

$$w^{l}(\chi) \propto \Omega_{m} H_{0}^{2} \frac{\chi_{*} - \chi}{\chi_{*}} \frac{\chi}{a}$$

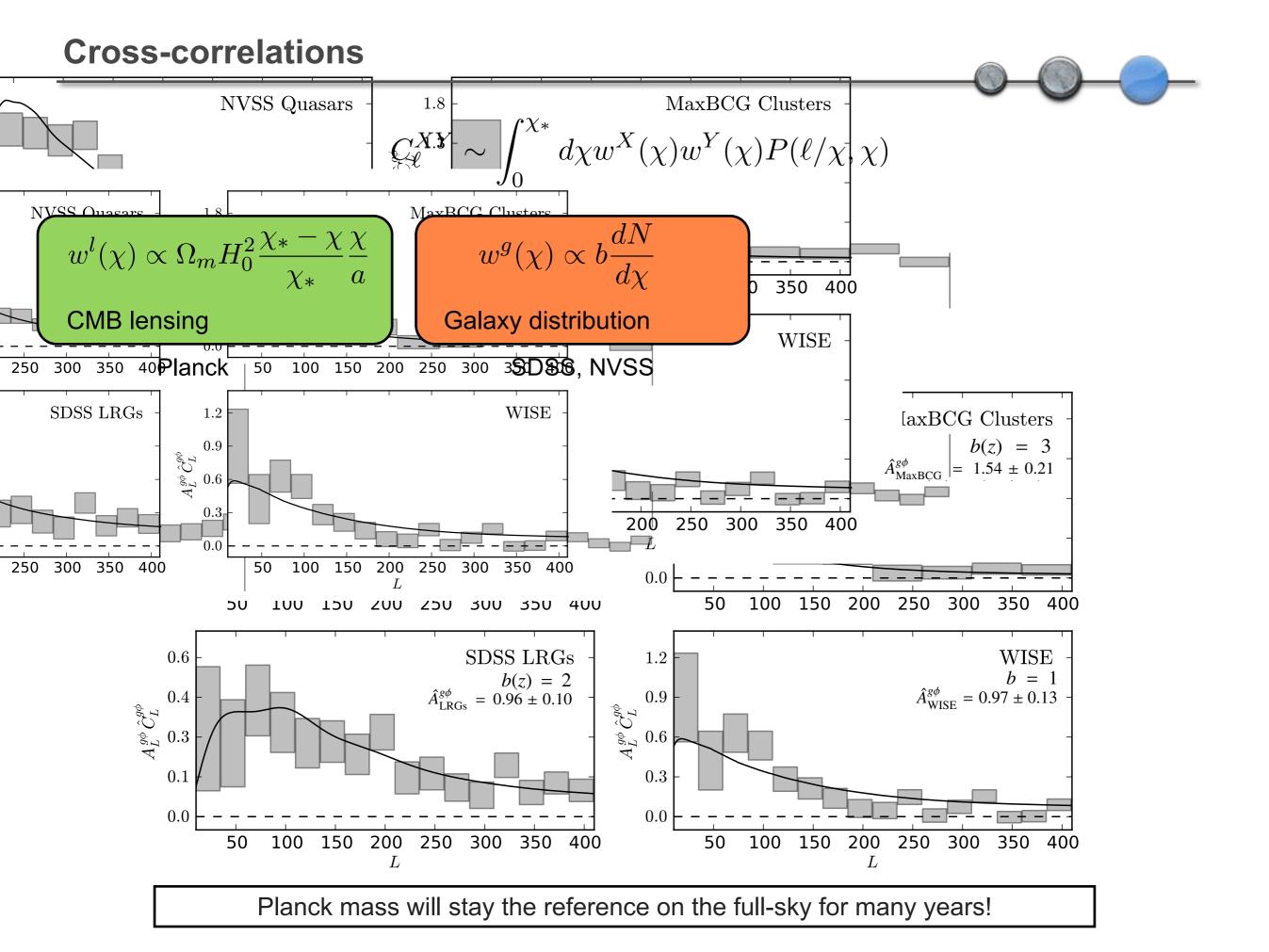
CMB lensing

Planck

$$w^g(\chi) \propto b \frac{dN}{d\chi}$$

Galaxy distribution

SDSS, NVSS



Corrélations croisées

$$C_{\ell}^{XY} \sim \int_{0}^{\chi_*} d\chi w^X(\chi) w^Y(\chi) P(\ell/\chi, \chi)$$

$$w^l(\chi) \propto \Omega_m H_0^2 \frac{\chi_* - \chi}{\chi_*} \frac{\chi}{a}$$

Planck

CMB lensing

 $w^g(\chi) \propto b \frac{dN}{d\chi}$

Galaxy distribution

SDSS, DES, Euclid, LSST

 $w^s(\chi) \propto H_0^2 \Omega_m \frac{\chi}{a} \int_{\chi}^{\chi_*} d\chi' \frac{dN}{d\chi'} \frac{\chi' - \chi}{\chi'}$

Weak lensing on galaxies

DES, Euclid, LSST

CMB lensing: non biased, purely geometric, source plane well-known

Corrélations croisées

$$C_{\ell}^{XY} \sim \int_{0}^{\chi_*} d\chi w^X(\chi) w^Y(\chi) P(\ell/\chi, \chi)$$

$$w^l(\chi) \propto \Omega_m H_0^2 \frac{\chi_* - \chi}{\chi_*} \frac{\chi}{a}$$

CMB lensing

Planck

$$w^g(\chi) \propto b \frac{dN}{d\chi}$$

Galaxy distribution

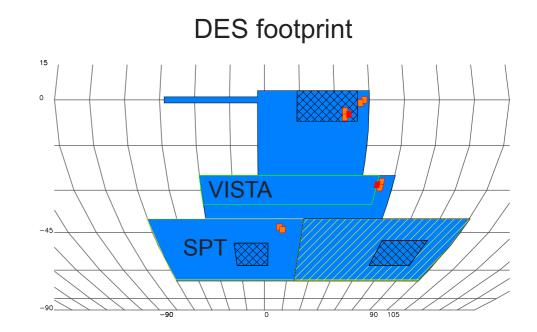
SDSS, DES, Euclid, LSST

$$w^s(\chi) \propto H_0^2 \Omega_m \frac{\chi}{a} \int_{\chi}^{\chi_*} d\chi' \frac{dN}{d\chi'} \frac{\chi' - \chi}{\chi'}$$

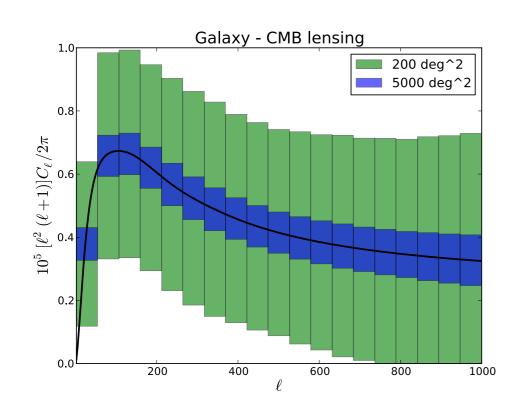
Weak lensing on galaxies

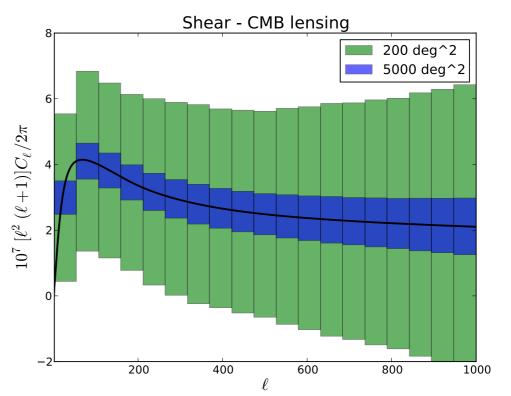
DES, Euclid, LSST

- CMB lensing: non biased, purely geometric, source plane well-known
- The Dark Energy Survey
 - 5000 deg² grizY to 24th mag
 - 15 deg² for type la supernovae
 - 5 years
 - 300 millions photometric redshifts
 - Cluster count
 - Weak lensing
 - Large Scale structure
 - Type Ia supernovae



The Dark Energy Survey





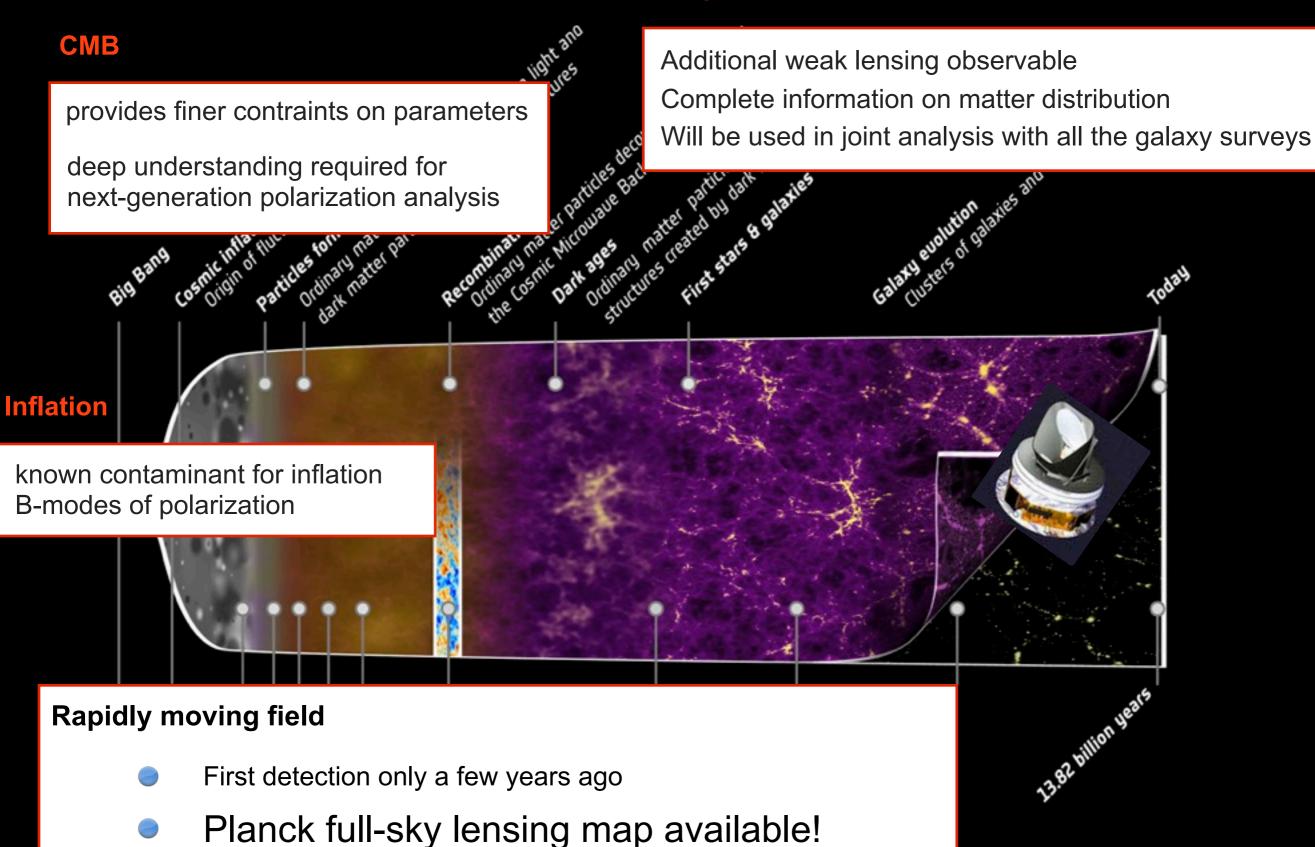
Benoit-Lévy & Kirk, DES internal note

Open questions

- Simply new observable?
- Better control on systematic errors?
- Better contraints on bias?
- Would a post-Planck CMB lensing measurement help?

CMB lensing: central in observational cosmology

large-scale structure



Large-scale structure needed

