Séminaire du Laboratoire de Physique Nucléaire et Hautes Energies Paris, UPMC, 17 janvier 2013

DES ACCÉLÉRATEURS DE PARTICULES POUR LE PATRIMOINE

Philippe Walter

Laboratoire d'archéologie moléculaire et structurale – UMR 8220 Université Pierre et Marie Curie / CNRS

philippe.walter@upmc.fr

Analyser des objets du patrimoine : les exigences

- Objets précieux ...
 - Éviter les prélèvements
 - Développer des techniques d'analyse in situ

PIXE

LES MATÉRIAUX DU PATRIMOINE, DES MATÉRIAUX PARTICULIERS

- (1) Des matériaux élaborés par des artistes et des artisans à partir de techniques souvent complexes
- ⇒ Reconstituer des étapes de créations des œuvres (mise en œuvre de procédés de synthèse ou de formulation)

(2) Des matériaux qui ont vieillis depuis leur élaboration

 ⇒ Reconstituer les mécanismes d'altération (pour la conservation et la restauration) Nécessité de développer des approches combinant des méthodes complémentaires, directement sur les oeuvres

Accélérateur Grand Louvre pour l' Analyse Elémentaire

FR 3506 – New AGLAE

fin 1988

L'intérieur du générateur haute tension: fonctionnement et caractéristiques

Le Christ à la colonne Bartolomé Esteban Murillo (1617-1682) H. : 0,33 m. ; L. : 0,30 m. Musée du Louvre, Départements des peintures, Inv. 932

Référence : PIXE reveals that two Murillo's masterpieces were painted on Mexican obsidian slabs - T. Calligaro, J.-C. Dran, S. Dubernet, G. Poupeau, F. Gendron, E. Gonthier, O. Meslay, D. Tenorio, *Nuclear Instruments and Methods in Physics Research B* **240** (2005) 576–582

Le support est comparable à une série d'objets archéologiques rectangulaires en obsidienne du MNHN à Paris appelés « miroirs fumants » et supposés précolombiens. Il provient du gisement de Ucaréo, Mexique.

Égypte ancienne

%	Bleu foncé	Turquoise	XVIII ^e dynastie
SIO,	48 - 77	44 - 76	Sable
AI,0,	0.8 - 5,2	0.9 - 3.4	
Fe0	0.39 - 1.48	0.33 - 0.99	
Na.0	6 - 20	6 - 19	Source Na
MgO	2.3 - 4.9	0.7 - 6.1	végétale
K20	0.9 - 2.6	0.9 - 3,3	cendre de plante
P,0,,	< 0.55	<1	marine - salicorne
01, 50,	< 3	< 3	
CoO	0.1 - 0.5	0	Source cobalt Égypte CoMnNiZn
CuO	0 - 0.7	0.8 - 3.2	
Sb,0,	5.5 - 9.7	2.6 - 9.5	opacifiant
As203	0-2.4	0.5 - 5.7	antimoniate de Ca

XIX^esiècle

%	Bleu ciel	Bleu foncé	Tête bleue Louvre
SIO,	47	40	Sable
ALD.	1.4	2.4	
FeO	0.4	0.63	
CaO	1.9	2.1	
Na _. 0	12	11.9	Source Na
MgO	2,1	1.9	non végétale
K20	2.4	3.4	
P.0.	0	0	
CI, SO,	0 - 0.23	0 - 0.48	
CoO	0.16	0.4	Source cobalt
Cub	0.08	0	CoAlNi
Sb,0,	0.1	0.3	opacifiant
PbO	25	28	arséniate de Pb
As203	5.4	4	

En Egypte ancienne : verre sodique opacifié par un antimoniate de calcium A partir du XVIIIe siècle, verre sodique avec beaucoup de plomb et d'arsenic

Référence : Geneviève Pierrat-Bonnefois et Isabelle Biron, La tête égyptienne en verre bleu : la conclusion d'une enquête, *La Revue du Louvre et des Musées de France*, n°3, 2003, 27-37.

Plat en majolique lustrée, *Dédale sculptant*, production de l'atelier de Mastro Giorgio Andreoli, Gubbio, Italie, 1533. Musée National de la Céramique, Sèvres

Cu and/or Ag nano-cristals.

- □ Body: Clay forming (approx. 950°C firing)
- □ Glaze: Pb-Sn-Si oxides frit layer (approx. 850°C)
- □ Luster: Cu-Ag salts + ochre slip (approx. 600°C with REDUCING atmosphere).

Référence : Padeletti G., Ingo G.M., Bouquillon A., Pages S., Aucouturier M., Roehrs S., Fermo P., First-time observation of Mastro Giorgio masterpieces by means of non-destructive techniques, **Applied physics** A, 83, 2006, 475-483.

L'apport du rayonnement synchrotron

Main mineral components : black and white minerals

Galena PbS

Cerussite PbCO₃

Phosgenite Pb₂Cl₂CO₃ Laurionite PbOHCl

Nature, 387 (1999) 483

High resolution powder X-ray diffraction

ESRF, BM16 – ID31

Mathias Grünewald Isenheim Altarpiece (1512- 1515-16), Colmar

(Analytical Chemisry, 2006 and 2007)

MGN3-Grey The Resurrection Issenheim alterpiece

Chemical mapping

M. Cotte, et al., *Anal. Chem.*, **79**, 6988-6994 (2007).

min

µXRD on painting samples (ESRF, ID22)

Analyse avec un faisceaux focalisé de 1x3µm

Le blanc de plomb

Deux phases minérales composent le blanc de plomb :

- La cérusite (PbCO₃) : occurrence importante dans la nature association à d'autres minérais notamment de galène (PbS) argentifère
- L'hydrocérusite (2PbCO₃.Pb(OH)₂) : rare à l'état naturel

-Autres carbonates de plomb : plumbonacrite $Pb_5(CO_3)_3O(O H)_2$, shannonite $Pb_2(CO_3)O$, *etc*.

Pline L'Ancien, *Histoire Naturelle* :

« La céruse, provient aussi des ateliers où on travaille le plomb; la plus estimée se fabrique à Rhodes. On la prépare en disposant au-dessus d'un récipient rempli de vinaigre très fort des râpures de plomb très menues qui, de cette façon, se dissolvent et tombent goutte à goutte. Ce qui est tombé dans le vinaigre est séché, moulu et tamisé, puis de nouveau on y ajoute du vinaigre, et on fait des pastilles qu'on fait sécher au soleil, en été. »

Pb \rightarrow PbO \longrightarrow 2PbCO₃.Pb(OH)₂ ou PbCO₃ CO₂(g), H₂O, Acide acétique

XRD mapping

Différences de composition dans la stratigraphie

Classification du blanc de plomb : à partir de 10 échantillons

E. Welcomme et al., Applied Physics A, 2007

L'usage du blanc de plomb pour la peinture

Différents blancs de plomb disponibles sur le marché de Francfort durant cette époque sont décrits :

- Céruse de Venise
- Céruse d'Anvers
- Blanc de plomb ordinaire

Livres des simples médecines (≈1520)

- Granulométries différentes selon la couche considérée
- Présence de calcite en mélange dans la couche d'impression

µXRD en tomographie (ESRF, ID22)

P. Bleuet at al., Nature Materials, 2008

Des nouvelles sources intenses

Deux projets

NewAGLAE :

Développement de l'imagerie chimique élémentaire non invasive Nouvelle optique de faisceau, Résolution 10µm, Opérationnel du lundi matin au vendredi soir, Angle solide de détection amélioré

ThomX :

Faisceau de rayons X produit par effet Compton inverse $10^{11} - 10^{13}$ photons/s, 20-80 keV

Nouveau système de détection installé sur AGLAE

THALES

ThomX :Faisceau de rayons X produit par effetCompton inverse $10^{11} - 10^{13}$ photons/s, 20-80 keV

For head-on collisions

1 nc / bunch , 50 Hz inj. freq.

ThomX design

ETDE

CELIA Thom

P. Walter, A. Variola, F. Zomer, M. Jacquet, and A. Loulergue. A new high quality X-ray source for Cultural Heritage. Comptes Rendus de *Physique*, 10(7):676–690, SEP 2009.

Laser /cavity system :

Laser ~ 1W

- → Optical fiber amplification ~ 100 W
- → Optical FP cavity gain 10000
- → 1 MW inside cavity

Des sources portables

Les rayons X d'énergie différentes sont soumis à une atténuation différente par la couche de vernis.

Elements inorganiques dans le glacis : Fe₂O₃ 1 %, MnO₂ 1.4 %, *Pb* 5 %

Identification des pigments par diffraction des rayons X

2-Theta - Scale

C:\Data\castaingXRD\jacques08\Ste_AnneXRD\BLEU_03.chi - File: BLEU_03.RAW - Type: 2Th/Th locked0-0315+0586 (*) - Calcite syn - CaCO3 - Y: 19.01 % - d x by: 1. - WL: 1.54 - 0 - I/lc PDF 2. -Operations: Displacement -0.341 | Background 0.380,1.000 | Import

- C:\Documents and Settings\microdiff\Mes documents\XRDportablConverted from UXD format to RAW for Dif [...]
- Operations: Y Scale Add 1000 | Y Scale Add 6601 | Displacement -0.333 | Background 0.676,1.000 | Import
- 00-005-0417 (I) Cerussite syn PbCO3 Y: 31.50 % d x by: 1. WL: 1.54 0 -
- ●00-013-0131 (I) Hydrocerussite syn Pb3(CO3)2(OH)2 Y: 83.24 % d x by: 1. WL: 1.54 0 -
- 00-017-0749 (N) Lazurite (Na,Ca)8(AISiO4)6(S,SO4,CI)x Y: 44.41 % d x by: 1. WL: 1.54 0 -

O0-033-1161 (*) - Quartz syn - SiO2 - Y: 15.17 % - d x by: 1. - WL: 1.54 - 0 - I/Ic PDF 3.6 -

Sainte Anne, la Vierge et l'Enfant

Dame de la cour de Milan (Belle Ferronière)

Saint Jean-Baptiste

Bacchus (atelier de Léonard)

Merci de votre attention !