Supersymmetry in light of colliders and cosmology

Farvah Nazila Mahmoudi

Uppsala University

Clermont-Ferrand, LPC - 13 March 2008

A (1) > A (1) > A

13 March 2008

Outline

- 2 Beyond Standard Model: Supersymmetry
- SUSY Constraints
- ④ B Physics
 - Isospin Asymmetry
 - Superlso
- 5 New constraints from B Physics
- 6 Constraints from Cosmology
- 7 Preferred Parameter Space
 - Conclusion

13 March 2008

Introduction

New physics appears as a necessity:

- cosmological problems: dark matter, dark energy
- hierarchy problem in the Standard Model
- unification of interactions

The hope is that LHC will find something new!

• New Physics!

Many theoretical models beyond the SM, within reach of the LHC, already exist in the market.

Supersymmetry

- Supersymmetry (SUSY) is the best motivated and studied candidate for physics beyond the Standard Model.
- It is based on a symmetry between fermions and bosons

Motivation of SUSY in Particle Physics

- Unification of gauge couplings
- Unification with gravity
- Solution of the hierarchy problem
- Candidate for Dark Matter
- Elegant...

13 March 2008

MSSM

Minimal Supersymmetric extension of the Standard Model (MSSM): over 100 free parameters!

 \twoheadrightarrow phenomenological studies are unfeasible!!

SUSY breaking scenarios

- mSUGRA $\{m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)\}$
- NUHM {mSUGRA parameters + M_A and μ }
- AMSB $\{m_0, m_{3/2}, \tan\beta, \operatorname{sign}(\mu)\}$
- GMSB {A, $M_{\rm mess}$, N_5 , $c_{\rm grav}$, tan β , ${\rm sign}(\mu)$ }

 \hookrightarrow Get as much information as we can on these parameters!

・ロト ・ 一日 ト ・ 日 ト

13 March 2008

5 / 46

Farvah Nazila Mahmoudi (Uppsala U.)

SUSY Constraints

The most used constraints:

- Collider limits
- Electroweak precision tests
- ullet The anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$\Delta a_\mu \equiv a_\mu^{SUSY} \equiv a_\mu^{exp} - a_\mu^{SM} = (26\pm16) imes10^{-10}$$

- B Physics
- Cosmological constraints, in particular from WMAP and the relic density

13 March 2008

Experimental limits

Lower bounds on sparticle masses in GeV:

Particle	h ⁰	χ_1^0	Ĩ _R	$\tilde{\nu}_{e,\mu}$	χ_1^{\pm}	\tilde{t}_1	ĝ	\tilde{b}_1	$\tilde{\tau}_1$	\tilde{q}_R
Lower bound	111	46	88	43.7	67.7	92.6	195	89	81.9	250

Yao et al. J. Phys. G33 (2006)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- 20

7 / 46

13 March 2008

Constraining the parameters

mSUGRA

Ellis et al., Phys. Lett. B565, 176 (2003)

(日) (同) (日) (日)

-

8 / 46

13 March 2008

- A good strategy to find the information on SUSY particles would be
 - to look at where the SM contributions are vanishingly small,
 - to study processes for which QCD corrections are known with high accuracy
 - and branching ratios can be measured in LHC at low luminosity.

\Rightarrow Rare B decays are IDEAL CHOICES for that!

(日) (同) (日) (日)

13 March 2008

- A good strategy to find the information on SUSY particles would be
 - to look at where the SM contributions are vanishingly small,
 - to study processes for which QCD corrections are known with high accuracy
 - and branching ratios can be measured in LHC at low luminosity.

\Rightarrow Rare B decays are IDEAL CHOICES for that!

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

13 March 2008

- A good strategy to find the information on SUSY particles would be
 - to look at where the SM contributions are vanishingly small,
 - to study processes for which QCD corrections are known with high accuracy
 - and branching ratios can be measured in LHC at low luminosity.

\Rightarrow Rare B decays are IDEAL CHOICES for that!

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

13 March 2008

- A good strategy to find the information on SUSY particles would be
 - to look at where the SM contributions are vanishingly small,
 - to study processes for which QCD corrections are known with high accuracy
 - and branching ratios can be measured in LHC at low luminosity.

\Rightarrow Rare B decays are IDEAL CHOICES for that!

13 March 2008

- $b \longrightarrow s\gamma$ transition: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code Superlso

< 日 > (一) > (二) > ((二) > ((二) > ((1)

13 March 2008

- $b \longrightarrow s\gamma$ transition: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code Superlso

< 日 > (一) > (二) > ((二) > ((二) > ((1)

13 March 2008

- $b \longrightarrow s\gamma$ transition: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code Superlso

< 日 > (一) > (二) > ((二) > ((二) > ((1)

13 March 2008

- $b \longrightarrow s\gamma$ transition: very sensitive to new physics
 - forbidden at the tree level in SM and can only be induced via loop diagrams,
 - SM contributions are vanishingly small,
- branching ratios have been extensively used to constrain SUSY parameter space
- Study another observable: isospin asymmetry
 - already measured by BELLE and BABAR
 - calculable with the publicly available code Superlso

< 日 > (一) > (二) > ((二) > ((二) > ((1)

Effective Hamiltonian

The idea of $B \longrightarrow X_s \gamma$ decay begins with introducing an effective Hamiltonian:

$$\mathcal{H}_{eff} = -rac{4G_F}{\sqrt{2}}V_{ts}^*V_{tb}\sum_{i=1}^8 C_i(\mu)O_i(\mu)$$

$$\begin{aligned} O_{1} &= (\bar{s}_{L}\gamma_{\mu} T^{a} c_{L})(\bar{c}_{L}\gamma^{\mu} T^{a} b_{L}) \qquad O_{2} &= (\bar{s}_{L}\gamma_{\mu} c_{L})(\bar{c}_{L}\gamma^{\mu} b_{L}) \\ O_{3} &= (\bar{s}_{L}\gamma_{\mu} b_{L}) \sum_{q} (\bar{q}\gamma^{\mu} q) \qquad O_{4} &= (\bar{s}_{L}\gamma_{\mu} T^{a} b_{L}) \sum_{q} (\bar{q}\gamma^{\mu} T^{a} q) \\ O_{5} &= (\bar{s}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}} b_{L}) \sum_{q} (\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}} q) \\ O_{6} &= (\bar{s}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}} T^{a} b_{L}) \sum_{q} (\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}} T^{a} q) \\ O_{7} &= \frac{e}{16\pi^{2}} m_{b} (\bar{s}_{L}\sigma^{\mu\nu} b_{R}) F_{\mu\nu} \qquad O_{8} &= \frac{g}{16\pi^{2}} m_{b} (\bar{s}_{L}\sigma^{\mu\nu} T^{a} b_{R}) G_{\mu\nu}^{a} \end{aligned}$$

-2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Wilson Coefficients

$$C_i^{eff}(\mu) = C_i^{(0)eff}(\mu) + \frac{\alpha_s(\mu)}{4\pi} C_i^{(1)eff}(\mu) + \cdots$$

The effective coefficients evolve according to their RGE:

$$\mu \frac{d}{d\mu} C_i^{\text{eff}}(\mu) = C_j^{\text{eff}}(\mu) \gamma_{ji}^{\text{eff}}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{\textit{eff}}(\mu)$:

$$\hat{\gamma}^{\text{eff}}(\mu) = \frac{\alpha_s(\mu)}{4\pi} \hat{\gamma}^{(0)\text{eff}} + \frac{\alpha_s^2(\mu)}{(4\pi)^2} \hat{\gamma}^{(1)\text{eff}} + \cdots$$

Farvah Nazila Mahmoudi (Uppsala U.)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^- \to K^{*-}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^- \to K^{*-}\gamma)}$$

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^- \to K^{*-}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^- \to K^{*-}\gamma)}$$
$$\Delta_{0-} = \operatorname{Re}(b_d - b_u).$$

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^- \to K^{*-}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^- \to K^{*-}\gamma)}$$
$$\Delta_{0-} = \operatorname{Re}(b_d - b_u).$$
$$b_q = \frac{12\pi^2 f_B Q_q}{m_b T_1^{B \to K^*} a_7^c} \left(\frac{f_{K^*}^{\perp}}{m_b} K_1 + \frac{f_{K^*} m_{K^*}}{6\lambda_B m_B} K_2\right)$$

Farvah Nazila Mahmoudi (Uppsala U.)

イロト イポト イヨト イヨト

13 March 2008

∃ 990

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) - \Gamma(B^{-} \to K^{*-}\gamma)}{\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\gamma) + \Gamma(B^{-} \to K^{*-}\gamma)}$$
$$\Delta_{0-} = \operatorname{Re}(b_{d} - b_{u}).$$
$$b_{q} = \frac{12\pi^{2}f_{B} Q_{q}}{m_{b} T_{1}^{B \to K^{*}} a_{7}^{c}} \left(\frac{f_{K^{*}}^{\perp}}{m_{b}} K_{1} + \frac{f_{K^{*}}m_{K^{*}}}{6\lambda_{B}m_{B}} K_{2}\right)$$
$$a_{7}^{c} = C_{7} + \frac{\alpha_{s}(\mu)C_{F}}{4\pi} \left(C_{1}(\mu)G_{1}(s_{p}) + C_{8}(\mu)G_{8}\right) + \frac{\alpha_{s}(\mu_{h})C_{F}}{4\pi} \left(C_{1}(\mu_{h})H_{1}(s_{p}) + C_{8}(\mu_{h})H_{8}\right)$$

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008 13 / 46

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の久で

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^- \to K^{*-}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^- \to K^{*-}\gamma)}$$
$$\Delta_{0-} = \operatorname{Re}(b_d - b_u).$$
$$b_q = \frac{12\pi^2 f_B Q_q}{m_b T_1^{B \to K^*} a_7^c} \left(\frac{f_{K^*}^{\perp}}{m_b} K_1 + \frac{f_{K^*} m_{K^*}}{6\lambda_B m_B} K_2\right)$$

$$a_{7}^{c} = \frac{C_{7}}{4\pi} + \frac{\alpha_{s}(\mu)C_{F}}{4\pi} \Big(C_{1}(\mu)G_{1}(s_{p}) + C_{8}(\mu)G_{8} \Big) + \frac{\alpha_{s}(\mu_{h})C_{F}}{4\pi} \Big(C_{1}(\mu_{h})H_{1}(s_{p}) + C_{8}(\mu_{h})H_{8} \Big)$$

In the Standard Model: $\Delta_{0-} \simeq 8\%$

Kagan and Neubert, Phys. Lett. B 539, 227 (2002) Bosch and Buchalla, Nucl. Phys. B 621, 459 (2002)

Contribution to Isospin Asymmetry

QCD penguin operators

Electro- and chromo-magnetic operators

Supersymmetric contributions

MSSM with minimal flavor violation (MFV) \hookrightarrow no more flavor/CP violation than in SM

Calculation of the coefficients at $\mu = M_W$:

$$C_i(\mu) = C_i^{W^{\pm}}(\mu) + C_i^{H^{\pm}}(\mu) + C_i^{\chi^{\pm}}(\mu)$$

Gómez et al. Phys. Rev. D74, 015015 (2006) Degrassi et al. JHEP 12, 009 (2000) Ciuchini et al. Nucl. Phys. B 534, 3 (1998) Ciuchini et al. Nucl. Phys. B 527, 21 (1998)

Superlso v2.0

A public C-program for calculating isospin asymmetry of $B \to K^* \gamma$ in supersymmetry.

- calculation of isospin asymmetry at NLO and inclusive branching ratio at NNLO,
- automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

13 March 2008

- calculation of isospin asymmetry at NLO and inclusive branching ratio at NNLO,
- automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

< 日 > (一) > (二) > ((二) > ((二) > ((1)

13 March 2008

- calculation of isospin asymmetry at NLO and inclusive branching ratio at NNLO,
- automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

13 March 2008

- calculation of isospin asymmetry at NLO and inclusive branching ratio at NNLO,
- automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,

• modular program, with a well-defined structure.

13 March 2008

- calculation of isospin asymmetry at NLO and inclusive branching ratio at NNLO,
- automatic calculation in mSUGRA, NUHM, AMSB and GMSB scenarios,
- compatible with the SUSY Les Houches Accord Format,
- modular program, with a well-defined structure.

- ロ ト - 4 同 ト - 4 回 ト - 4 回 ト

13 March 2008

Superlso

Superlso v1.0

Farvah Nazila Mahmoudi (Uppsala U.)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへで

Superlso

Superlso v2.0

Superlso v2.0

Can be downloaded from: http://www3.tsl.uu.se/~nazila/superiso/

Manual: F. Mahmoudi, arXiv:0710.2067 available online on Comput. Phys. Commun.

For more information:

M. Ahmady & F. Mahmoudi, Phys. Rev. D75 (2007) F. Mahmoudi, JHEP 0712, 026 (2007)

イロト イポト イヨト イヨト

13 March 2008

Experimental data

<u>BABAR</u>

$$\Delta_{0-} = +0.050 \pm 0.045(\textit{stat}) \pm 0.028(\textit{syst}) \pm 0.024(\textit{R}^{+/0})$$

Aubert et al. (BABAR Collaboration) Phys. Rev. D72 (2005)

<u>BELLE</u>

$\Delta_{0+} = +0.012 \pm 0.044(stat) \pm 0.026(syst)$

Nakao et al. (BELLE Collaboration) Phys. Rev. D69 (2004)

Allowed Region: $-0.018 < \Delta_{0-} < 0.093$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

13 March 2008

Results: mSUGRA

Ahmady & Mahmoudi, Phys. Rev. D75 (2007)

(日) (同) (日) (日) (日)

13 March 2008

-2

Results: mSUGRA

Ahmady & Mahmoudi, Phys. Rev. D75 (2007)

э

< 17 × 4

Ahmady & Mahmoudi, Phys. Rev. D75 (2007)

< E

13 March 2008

3

Ahmady & Mahmoudi, Phys. Rev. D75 (2007)

< 17 × 4

13 March 2008

4

Farvah Nazila Mahmoudi (Uppsala U.)

-1

Results: NUHM

F. Mahmoudi, JHEP 0712, 026 (2007)

13 March 2008

а.

Results: NUHM

F. Mahmoudi, JHEP 0712, 026 (2007)

・ロト ・ 日 ・ ・ ヨ ・

13 March 2008

-

Results: AMSB

F. Mahmoudi, JHEP 0712, 026 (2007)

◆□ > ◆圖 > ◆国 > ◆国 >

13 March 2008

-2

Results: AMSB

F. Mahmoudi, JHEP 0712, 026 (2007)

(日) (同) (日) (日)

13 March 2008

3

Results: GMSB

F. Mahmoudi, JHEP 0712, 026 (2007)

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Results: GMSB

F. Mahmoudi, JHEP 0712, 026 (2007)

13 March 2008

э

Results

F. Mahmoudi, JHEP 0712, 026 (2007)

(日) (部) (目) (日)

13 March 2008

4

Results

mSUGRA

F. Mahmoudi, JHEP 0712, 026 (2007)

◆□ > ◆圖 > ◆ 圖 > ◆ 圖 >

13 March 2008

э

Results

mSUGRA

AMSB

F. Mahmoudi, JHEP 0712, 026 (2007)

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008 29 / 46

3

(日) (同) (日) (日)

F. Mahmoudi, JHEP 0712, 026 (2007)

(日) (同) (日) (日) (日)

13 March 2008

-2

F. Mahmoudi, JHEP 0712, 026 (2007)

э

(日) (同) (日) (日)

Let's add

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

13 March 2008

4

Relic density

The recent observations of the WMAP satellite, combined with other cosmological data impose the dark matter density range at 95% C.L.:

 $0.088 < \Omega_{DM} h^2 < 0.12$

<ロト <部ト <きト <きト = 3

In the Standard Model of Cosmology:

• at and before nucleosynthesis time, the expansion is dominated by radiation

$$H^2=8\pi G/3 imes
ho_{\sf rad}$$

• the evolution of the number density of supersymmetric particles follows the equation

$$\frac{dn}{dt} = -3Hn - \langle \sigma_{\mathsf{eff}} v \rangle (n^2 - n_{\mathsf{eq}}^2)$$

 solving this equation leads to relic density of SUSY particles in the present Universe

Problem: we have no good constraints on the pre-nucleosynthesis era!

 \Rightarrow the expansion rate can be different from what expected in standard cosmology...

(日) (同) (日) (日)

The expansion rate modification can be parametrized by adding a new density ρ_D : ($T_0 \sim$ nucleosynthesis temperature)

$$H^{2} = 8\pi G/3 \times (\rho_{rad} + \rho_{D})$$
 with $\rho_{D}(T) = \rho_{D}(T_{0})(T/T_{0})^{n_{D}}$

- $n_D = 4$: radiation-like behavior
- $n_D = 6$: behavior of a scalar field dominated by its kinetic term
- $n_D > 6$: extra-dimension effects

We introduce $\kappa_D = \rho_D(T_0)/\rho_{rad}(T_0)$

The modified expansion is in agreement with the observations provided

$$n_D>4$$
 and $\kappa_D<1$

Such a modification can drastically change the calculated relic density!

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三三 - のへの

13 March 2008

For a mSUGRA test-point with a relic density of $\Omega_{LSP} h^2 = 0.105$ (favored by WMAP) in the usual cosmological model, in the expansion rate modified scenario the computed relic density is changed:

Arbey & Mahmoudi, arXiv:0803.0741

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in mSUGRA

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in NUHM

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in NUHM

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in NUHM

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in NUHM

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in NUHM

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Displacement of the WMAP limits in NUHM

Large even for a small expansion rate modification!

Arbey & Mahmoudi, arXiv:0803.0741

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008

Consequence: using the lower limit of the WMAP limit to constrain the relic density is unsafe!

Only the upper limit should be used: $\Omega_{DM}h^2 < 0.12$!

Farvah Nazila Mahmoudi (Uppsala U.)

13 March 2008 39 / 46

Conclusion

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- Isospin asymmetry provides new valuable information
- Cosmological data should be taken with a grain of salt
- This kind of analysis should be generalized to more new physics scenarios

13 March 2008

Conclusion

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- Isospin asymmetry provides new valuable information
- Cosmological data should be taken with a grain of salt
- This kind of analysis should be generalized to more new physics scenarios

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

13 March 2008

Conclusion

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- Isospin asymmetry provides new valuable information
- Cosmological data should be taken with a grain of salt
- This kind of analysis should be generalized to more new physics scenarios

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

13 March 2008
Conclusion

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- Isospin asymmetry provides new valuable information
- Cosmological data should be taken with a grain of salt
- This kind of analysis should be generalized to more new physics scenarios

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

13 March 2008

Conclusion

- Indirect constraints and in particular flavor physics are essential to restrict new physics parameters
- That will become even more interesting when combined with LHC data
- Isospin asymmetry provides new valuable information
- Cosmological data should be taken with a grain of salt
- This kind of analysis should be generalized to more new physics scenarios

(人間) 人 ヨト 人 ヨト

13 March 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Backup

13 March 2008

At 95% C.L.,

- $Br(B \rightarrow X_s \gamma)$: 2.07 × 10⁻⁴ < $\mathcal{B}(b \rightarrow s \gamma)$ < 4.84 × 10⁻⁴
- Isospin asymmetry: $-0.018 < \Delta_{0-} < 0.093$
- $Br(B_s \to \mu^+ \mu^-)$: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 0.97 \times 10^{-7}$
- WMAP: $0.088 < \Omega_{DM} h^2 < 0.12$
- Older WMAP: $0.1 < \Omega_{DM} h^2 < 0.3$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 - のへの

13 March 2008