Implications of the present measurements on theoretical ideas

Emidio Gabrielli NICPB, Tallinn, Estonia University and INFN, Trieste, Italy

9th b-Physics Workshop 18-19 Feb 2013 - LAPP Annecy French-Italian meeting on the b-Physics Flavor physics in the light of the recent results at LHC

Outlook

- Anatomy of the Higgs-like resonance
- Impact on popular ideas on BSM Higgs scenarios
- Impact on Fermiophobic-like Higgs models
- Measuring the sign of top-Yukawa coupling
- Higgs-boson imposters
- Conclusions

Where are we?

a new particle (resonance) has been discovered → consistent with the long-awaited SM Higgs boson

CMS mH = 125.8 ± 0.4(stat) ± 0.4 (syst) GeV ATLAS mH = 126 GeV ± 0.4(stat) ± 0.4 (syst) GeV CMS Preliminary vs = 7 TeV, L = 5.1 fb⁻¹ vs = 8 TeV, L = 12.2 fb⁻¹ 1 10^{-1▶} <mark>م</mark> 10 Local p-value **ATLAS** Preliminary oined observed 2σ observed 3σ 10 observed $\sqrt{s} = 7$ TeV, |Ldt = 4.6-4.8 fb⁻¹ observed +lvlv observed 4σ $\sqrt{s} = 8$ TeV. |Ldt = 13 fb⁻¹ 10 0-5 mbined expected 5σ 10 'n 10⁻⁹ 6σ 10^{-3} 4σ 10-5 7σ ōσ 10^{-13} Combined obs. 10 Exp. for SM H 8σ 6σ 10^{-9} 10-17 10-11 7σ 10⁻¹³ 115 120 135 140 145 125 130 125 110 115 120 130 135 m_н (GeV) m_H [GeV]

fully confirmed in all its most sensitive channels

Local probability p for a bckg-only experiment to be more signal like than the observation versus M_µ

Significance: ATLAS local 7.0 global 5.9 \rightarrow in 122-131 GeV (p = 1.7 x 10⁻⁹) CMS local 6.9

H $\rightarrow \gamma \gamma$ rules out spin-1. While spin-0 and spin-2 viable

Anatomy of the 125 GeV resonance

- assuming this is a SM Higgs-like boson
- main production mechanisms are (in order of relevance)
- Gluon-gluon fusion
 ggH → loop
- Vector Boson Fusion (VBF)
- **Crucial to measure Higgs couplings to W,Z, b, t, \tau** !
- tags are needed to isolate the production mechanisms
- In the loop, as well as on top-Yukawa coupling
 In the loop, as well as on top-Yukawa coupling

■ VBF, VH , H → VV → informations on Higgs coupling to W and Z

CMS tag analysis Nov 2012

Marco Zanetti, HCP 2012, Kyoto

Compatibility with SM Higgs hypothesis

ATLAS-CONF-2012-170

- overall signal strength normalized to SM $CMS = 0.88 \pm 0.21$ ATLAS = 1.4 ± 0.23
- di-photon rate enhancement is more pronounced in VBF

Higgs searches from Tevatron

Combination of searches for $H \rightarrow WW$ and $H \rightarrow bb$ shows a clear excess in the 115 GeV - 135 GeV mass region

Combined production rates are consistent within 1σ with a Higgs mass of 125 GeV. However, bb and $\gamma\gamma$ rates appear enhanced !

Combination of couplings

Assuming K_F scaling of all fermion couplings and K_V scaling of all vector boson couplings

CMS-HIG-12-045 **ATLAS CONF-2012-127** CMS Preliminary 7 TeV. L ≤ 5.1 fb⁻¹ √s = 8 TeV. L ≤ 12.2 fb⁻¹ \mathbf{x}_{T} κ_F (scaling of fermion couplings) o **ATLAS** Preliminary SM Higgs (Fermiophobic 🔶 Bkg. only + SM × Best fit $H \rightarrow WW$ <u>-2 ln $\Lambda(\kappa_V, \kappa_F) < 2.3$ </u> -2 ln $\Lambda(\kappa_V, \kappa_F) < 6.0$ $\sqrt{s} = 7$ TeV, $|Ldt = 4.8 \text{ fb}^{-1}|$ $\sqrt{s} = 8$ TeV, $\int Ldt = 5.8-5.9 \text{ fb}^{-1}$ $H \rightarrow \tau \tau$ -2 6.4 0.6 0.8 1.2 14 1.6 1.8 0.5 $\kappa_{\rm v}$ (scaling of vector boson couplings) κ_{V}

- **positive Yukawa** \rightarrow SM solution is out of 1 σ region
- negative Yukawa -> far from SM solution -> dramatic implications for EWSB (see next slides)

Test of Custodial Symmetry

■ parametrization $\lambda_{wz} = K_W / K_Z$ scaling of vector boson couplings ■ results well consistent with SM ■ $\lambda_{wz} \in CMS$: [0.57 – 1.65] ATLAS: [0.65 – 2] @ 95 % CL

CMS-HIG-12-045

ATLAS CONF-2012-127

Main properties: spin and CP

■ leptons kinematic distributions in $H \rightarrow ZZ \rightarrow 4I$ decay used to discriminate $J^{PC} = 0^{-1}$ and $J^{PC} = 2^{+1}$ from $J^{PC} = 0^{+1}$

Expected distribution of the test statistics comparing the signal J^P hypotheses: 0⁻ vs 0^{+.} Observed value indicated by the arrow

data disfavor pseudoscalar hypothesis (with a CL of 2.4 %)

What did we learn so far ?

- a new particle (elementary ?) with mass 125 GeV exists
- it is consistent with SM Higgs boson, considering its main decay channels $H \rightarrow WW, H \rightarrow ZZ, H \rightarrow \gamma\gamma, H \rightarrow \tau\tau$
- **a** observed decay $H \rightarrow \gamma \gamma$ rules out the spin-1 hypothesis
- spin 0 or 2 allowed -> pseudoscalar disfavored
- **decay H** $\rightarrow \gamma \gamma$ looks higher then SM \rightarrow hint of new physics ?
- more statistics is needed in order to assess a non-zero measurement of H \rightarrow bb and H $\rightarrow \tau \tau$
- **Tevatron sees a 2.9** σ excess in bb production, compatible with presence of H \rightarrow bb with mass in the range 120 139 GeV

Why not being happy with SM Higgs boson?

- mass is in the favored Higgs mass range of EWPT
- s x BRs well consistent with SM predictions !!!
- SM is a renormalizable theory in principle valid up to Planck mass M

Theoretical arguments in favor of New Physics

- quantum instability of Higgs mass sensitivity to (UV cutoff)² (cutoff scale is identified with mass of heavy particles coupled to Higgs)
- this is at the origin of what we call the fine-tuning problem
- Cosmological constant problem is similar (but worst)
- Solving the fine-tuning problem has been the guide for BSM theories
- But...maybe the fine-tuning problem is a ill-defined problem ?

Phenomenological arguments in favor of NP BSM:

→ huge hierarchy of fermion masses and mixing (origin of Yukawa couplings ?) → flavor hierarchy problem

 \rightarrow missing Dark matter candidate (as WIMP) in the SM

 \rightarrow not enough CP source for matter-antimatter asymmetry of Universe

BSM theories aim to solve the Higgs fine-tuning problem main approaches proposed so far:

Elementary Higgs boson \rightarrow symmetry that cancels Λ^2 terms (SUSY models, Lee-Wick SM (SM replica with massive ghosts))

Elementary Higgs boson -> UV scale lowered at TeV scale (quantum gravity models in large extra-dimensions)

Current status of SUSY searches 1 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)

	MSUGRA/CMSSM : 0 lep + j's + E _{T mice}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1	50 TeV g = g mass
.+-	MSUGRA/CMSSM : 1 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104] 1.24	$\vec{q} = \vec{q} m ass$
ω	Pheno model : 0 lep + j's + $E_{T,min}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1.18 T	∇ \tilde{g} mass $(m(\tilde{g}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}^0)$ ATLAS
S in	Pheno model : 0 lep + i's + $E_{T,max}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	Tev \tilde{q} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}^0)$ Preliminary
XX	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{q} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$) : 1 lep + i's + E	L=4.7 fb ⁻¹ , 7 TeV [1208.4688] 900 GeV	$\max_{mass} (m(\tilde{\chi}^0) < 200 \text{ GeV}, m(\tilde{\chi}^\pm) = \frac{1}{2} (m(\tilde{\chi}^0) + m(\tilde{g}))$
	$GMSB(\tilde{I} NI SP) : 2 lop (OS) + i's + F$	$I = 4.7 \text{ fb}^{-1}$ 7 TeV [1208.4688] 1 24	α mass $(\tan \beta < 15)$
	9 GMSB (τ NLSP) : 1-2 τ + 0-1 lep + i's + $E^{\tau,miss}$	$l = 4.7 \text{ fb}^{-1} \text{ 7 TeV} [1210 1314] $ 1 20 1	$\alpha \text{ mass} (\tan \beta > 20)$
2 5	GGM (bino NLSP) : $yy + F^{T,miss}$	$L = 4.8 \text{ fm}^{-1}$ 7 TeV [1210.0752] 1.20	$\tilde{\alpha}$ mass $(m\tilde{\omega}^0) > 50 \text{ GeV}$
	GGM (wino NI SP) : $y + lep + F^{T,miss}$	$L = 4.8 \text{ fb}^{-1}$ 7 TeV [1205.0735] 1.07 Te	Ldt = (2.1 - 13.0) fb
S ON	\subseteq GGM (higgsino-bino NI SP) : $y + b + F^{T,miss}$	L=4.8 (b) , 7 (eV [A1CA3-CONF-2012-144] 019 GEV g (114	$\sqrt{10} = 7.9 \text{ To}/$
	$GGM (biggsine Bille RESt) : T + iots + E^{T,miss}$	L=4.6 fb , 7 feV [1211.1167] 900 GeV	S = 7, 0 (eV
	= Craviting LSP : 'monoiot' + E	L=5.8 ID , 8 IEV [ATLAS-CONF-2012-152] 690 GeV G III	$r_{133} (m(n) > 200 \text{ GeV})$
	$\sim 1 = 10^{-0}$	L=10.5 m , 8 lev [ATLAS-CONF-2012-147] 645 Gev 1	\widetilde{a} mass $(\widetilde{a}) > 10^{\circ} \text{ eV}$
	$g \rightarrow b p \chi_{D}$ (virtual b) : 0 lep + 3 b-J's + $E_{T,miss}$	L=12.8 fb , 8 TeV [ATLAS-CONF-2012-145] 1.24	ev g mass $(m(\chi_1) < 200 \text{ GeV})$
	$g \rightarrow tt \chi_1$ (virtual t) : 2 lep (SS) + J'S + $E_{T,miss}$	L=5.8 fb ⁻ , 8 feV [ATLAS-CONF-2012-105] 850 GeV	mass $(m(\chi)) < 300 \text{ GeV}$ 8 TeV results
	$\mathfrak{G} \cong \mathfrak{g} \to \mathfrak{tt}\chi_1 (virtual t) : 3 lep + J's + E_{T,miss}$	L=13.0 fb ⁻ , 8 TeV [ATLAS-CONF-2012-151] 860 GeV	$\widetilde{\max} (m(\chi_1) < 300 \text{ GeV})$
6	$g \rightarrow tt \chi_{1}$ (virtual t) $\gtrsim 0$ lep + multi-J's + $E_{T,miss}$	L=5.8 fb ⁻ , 8 TeV [ATLAS-CONF-2012-103] 1.00 TeV	$g \max_{\chi_1} (m(\chi_1) < 300 \text{ GeV}) $ 7 TeV results
	$g \rightarrow tt \chi_1$ (virtual t) : 0 lep + 3 b-j's + $E_{T,miss}$	L=12.8 fb ⁺ , 8 TeV [ATLAS-CONF-2012-145] 1.15 Te	V g mass $(m(\chi_1) < 200 \text{ GeV})$
9 <u>–</u> 1	bb, $b_1 \rightarrow b \tilde{\chi}_1 : 0 \text{ lep } + 2 \text{ b-jets } + E_{T,\text{miss}}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165] 620 GeV D ma	S $(m(\chi_{1,0}) < 120 \text{ GeV})$
ກັດ	$\Xi_{\tau,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151] 405 GeV b mass (m()	$() = 2 m(\chi_1))$
_ _	$\underbrace{\text{tt}}_{T,\text{miss}} (\text{light}), t \rightarrow \underbrace{\text{D}}_{T} \chi^{-1} : 1/2 \text{ lep } (+ \text{ b-jet}) + E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102]67 GeV I Mass $(m(\chi_1) = 55 \text{ GeV})$	
Ϋ́ σ	$\widetilde{0}$ $\widetilde{0}$ tt (medium), t \rightarrow b $\chi_1^ \vdots$ 1 lep + b-jet + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-166] 160-350 GeV t mass $(m(\chi_1))$	0 GeV, $m(\chi_1^2) = 150$ GeV)
n v l	\overline{b} \overline{c} \overline{t} $(\underline{medium}), t \rightarrow b\chi_1^-: 2 \text{ lep } + E_{T, \text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167] 160-440 GeV t mass (m	$\widetilde{\chi}_{1}^{\circ}$) = 0 GeV, $m(t) - m(\widetilde{\chi}_{1}^{\pm})$ = 10 GeV)
	$\int_{0}^{0} \int_{0}^{0} \int_{0$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-166] 230-560 GeV t mass	$(m(\chi_1) = 0)$
	$\overleftarrow{\sigma} = \underbrace{tt, t \rightarrow t\chi}_{\tau} : 0/1/2 \text{ lep } (+ \text{ b-jets}) + E_{\tau,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.1447,1208.2590,1209.4186] 230-465 GeV t mass (r	$(\tilde{\chi}_1) = 0$
$\ldots >$	tt (natural GMSB) : $Z(\rightarrow II) + D$ -jet + E	L=2.1 fb ⁻¹ , 7 TeV [1204.6736] 310 GeV t mass (115 < m() < 230 GeV)
$\square > $	$I_{L}I_{L}, \rightarrow I_{\chi_{0}}: 2 \text{ lep } + E_{T, \text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884] 85-195 GeV Mass $(m(\tilde{\chi}_1) = 0)$	~ 1 ~ ~ ~ 0
	$\geq \bigcup_{i=1}^{\infty} \widetilde{\chi}_{1} \widetilde{\chi}_{1}, \widetilde{\chi}_{1} \rightarrow \operatorname{Iv}(\operatorname{Iv}) \rightarrow \operatorname{Iv}\widetilde{\chi}_{1} : 2 \operatorname{lep} + E_{T,\operatorname{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884] 110-340 GeV χ_1^- mass $(m\chi)^-$	$(10 \text{ GeV}, m(l, \bar{v})) = \frac{1}{2}(m(\bar{\chi}_{1}^{\pm}) + m(\bar{\chi}_{2}^{\pm})))$
	$\chi_1 \chi_2 \rightarrow [v_1] [(vv), v_1] [(vv)] : 3 \text{ lep } + E_{T,\text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154] 580 GeV χ ⁻ ma:	S $(m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^{\circ}), m(\tilde{\chi}_1^{\circ}) = 0, m(l, \tilde{v})$ as above)
	$\chi_1 \chi_2 \rightarrow W^* \chi_1 Z^* \chi_1 : 3 \text{ lep } + E_{T, \text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154] 140-295 GeV χ_1 mass $(m(\chi_1^{*}) = \chi_1^{*})$	$m(\chi_2^{-}), m(\chi_1^{-}) = 0$, sleptons decoupled)
	Direct χ_1^- pāir prod. (AMSB) : long-lived χ_1^-	L=4.7 fb ⁻¹ , 7 TeV [1210.2852] 220 GeV χ_1^- mass $(1 < \tau(\chi_1^+) < 10^{-1})$	ns)
	Stable \tilde{g} R-hadrons : low β , $\beta\gamma$ (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 985 GeV	g mass
	by β_{2} Stable t R-hadrons : low β, βγ (full detector)	L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 683 GeV t ma	SS
	GMSB : stable $\tilde{\tau}$	L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 300 GeV τ mass (5 < tanβ	< 20)
	$\widetilde{\chi}_{1} \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451] 700 GeV Q M	ASS (0.3×10 ⁻⁵ < λ'_{211} < 1.5×10 ⁻⁵ , 1 mm < c τ < 1 m, \tilde{g} decoupled)
<u>م</u>	LFV : $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	.61 TeV v_{τ} mass $(\lambda_{311}^{*}=0.10, \lambda_{132}=0.05)$
$\propto > 1$	LFV : $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary] 1.10 Te	$v_{\rm mass} = 0.10, \lambda_{1(2)33} = 0.05)$
-	Bilinear RPV CMSSM : 1 lep + 7 J's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	$\mathbf{q} = \mathbf{g} \max_{\mathbf{LSP}} (c\tau_{\mathbf{LSP}} < 1 \text{ mm})$
	$\cong \widetilde{\chi}_{1}\widetilde{\chi}_{2}\widetilde{\chi}_{1}\widetilde{\chi}_{1} \xrightarrow{\rightarrow} W\widetilde{\chi}_{0}\widetilde{\chi}, \widetilde{\chi}_{0}^{*} \xrightarrow{\rightarrow} eev_{\mu}, e\muv_{e}: 4 lep + E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153] 700 GeV χ ₁ Γ	IASS $(m(\tilde{\chi}_{1}) > 300 \text{ GeV}, \lambda_{121} \text{ or } \lambda_{122} > 0)$
	$I_{L}I_{L}, I_{L} \rightarrow I_{\chi_{1}}, \chi_{1} \rightarrow eev_{\mu}, e\mu v_{\mu} : 4 lep + E_{T, miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153] 430 GeV mass (m	k_{1}^{-} > 100 GeV, $m(l_{e})=m(l_{u})=m(l_{v}), \lambda_{121} \text{ or } \lambda_{122} > 0$
	$\widetilde{\mathbf{g}} \rightarrow \mathbf{q} \mathbf{q} \mathbf{q}$: 3-jeť resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813] 666 GeV g ma	SS
- 1 . 1	Scalar gluon : 2-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826] 100-287 GeV Sgluon mass (incl	limit from 1110.2693)
Ξ Ψ	vviivir interaction (DS, Dirac χ). monojet + E	L=10.5 fb'', 8 TeV [ATLAS-CONF-2012-147] 704 GeV M*	SCAIE $(m_{\chi} < 80 \text{ GeV}, \text{ limit of } < 687 \text{ GeV for D8})$
		10 ⁻¹	10

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Higgs mass impact on SUSY models (MSSM)

$$m_h^2 = M_Z^2 \cos^2 2\beta + \delta_t^2$$

large Higgs mass implies SUSY badly broken

at large tan β $\delta_t \approx \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$

M_H=125 GeV requires heavy squarks

Large mixing → heavy stops

~ 85 GeV

$$\sqrt{m_{Q_3}m_{u_3}} \gtrsim 700 \text{ GeV}$$

 fine-tuning O(1%) on EWSB condition

$$-\frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2$$

Natural SUSY with $M_{H} = 125 \text{ GeV}$

Why SUSY should be simple MSSM ?

NMSSM \rightarrow additional new singlet S $\rightarrow \mu$ -term naturally generated by <S>

$$\mathbf{W} \rightarrow \lambda S H_u H_d$$

no dimensionfull terms in the W superpotential

$$(m_h^2)_{\text{tree}} \le m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$$

potentially reducing the fine-tuning problem

however for large values of $\lambda > 0.7$ the theory becomes non-perturbative

• for $\lambda < 0.7$ theory is perturbative up to GUT scale

Iarge values of λ allow for lighter stops and much less fine tuning

only 5 – 10 % tuning if mediation scale of SUSY breaking is low and stop mixing is non-maximal

achieved with tanβ ~ 2 and λ ~ 0.7, but very close to the edge of perturbative regime

Naturalness in large λ –SUSY scenario

Higgs mass can be still 125 GeV with \lambda > 2 but strong dynamics expected at 10-100 TeV

Hall, Pinner, Ruderman JHEP 1204 (2012)

Interesting non-decoupling effects among Higgs-doublets:

- suppresses the coupling of light Higgs to b-quarks
- enhancing rates of $\gamma\gamma$ and WW and depleting rates of bb and $\tau\tau$

Composite Higgs models

Higgs boson is a bound state of a new strongly interacting sector → Pseudo Nambu-Goldstone Boson

Mass protected by its PNGB nature

Strongly Interacting Light Higgs (SILH)

Light composite Higgs as PNGB from strongly interacting sector (SIS)

Higgs mass is acquired by interactions of SIS with SM fields

 Various realizations in specific models (Holographic Higgs as PNGB, Little Higgs, etc)
 Harkani-Hamed, Cohen, Georgi (2001), Harkani-Hamed, Cohen, Katz, Nelson (2002), Contino, Nomura, Pomarol (2003)

• Low energy effective Lagrandian parametrization in terms of two parameters: coupling g_{ρ} and mass \mathcal{M}_{ρ} of the strongly interacting sector Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007)

• $m_{\rho} = g_{\rho} f \qquad \begin{array}{l} \text{Characteristic parameters} \\ \mathbf{f} = \text{scale of sigma-model} \\ \xi \equiv \frac{v^2}{f^2}, \quad v = \left(\sqrt{2}G_F\right)^{-1/2} = 246 \,\text{GeV} \end{array}$ Expected small modifications to the SM Higgs couplings

New operators in Higgs self-coupling suppressed by 1/m

Expected violation of unitarity in VV \rightarrow VV scattering

$$g_{hWW} = gm_{W} \left[1 - \frac{c_{H}}{2} \xi \right] ,$$

$$g_{hff} = \frac{gm_{f}}{2m_{W}} \left[1 - \xi \left(\frac{c_{H}}{2} + c_{y} \right) \right] ,$$

$$g_{hhh} = \frac{gm_{H}^{2}}{4m_{W}} \left[1 + \xi \left(c_{6} - \frac{3c_{H}}{2} \right) \right]$$

$$G_{i} \text{ parameters of order O(1)} \text{ model dependent}$$

Higgs does not balance completely the VV -> VV amplitude

Scale of unitarity breaking higher than in no-Higgs

$$\sigma \left(pp \to V_L V'_L X \right)_{c_H} = \left(c_H \xi \right)^2 \sigma \left(pp \to V_L V'_L X \right)_{H}$$

Unitarity recovered by exchange of heavy resonances

• new resonances are predicted in Composite Higgs models \rightarrow heavy vector-resonance ρ like in QCD, composite partners of top

rich phenomenology expected at LHC

D=actual number of events founds in the peak taking into account stat. fluct,

 $D = B + S - \overline{B}$

Limits on Higgs compositness

- Limits from couplings measurement of low mass Higgs h126
 - -> LHC: $4\pi f$ > 5-7 TeV if no deviations observed
 - -> ILC: $4\pi f$ > 30 TeV
- Direct analysis of VV scattering and double Higgs production at LHC:
 -> 4πf > 4 TeV (direct probe of SILH scenarios)
- At LHC direct search of ρ important at small g_ρ
 -> able to push m_ρ at 1 TeV-2 TeV, ie 4πf > 3-4 TeV but less effective at high g_ρ
- At ILC the test of aTGC can constraint m_ρ > 7-8 TeV

Bolognesi's talk snowmass 2013

More exotic scenarios

...what if Higgs boson is only responsible for Mw, Mz but not of fermion masses ?

- fermion masses \$\neq 0\$ ==> Chiral Symmetry Breaking
- in SM, ChSB and EWSB (M_w, M_z ≠ 0) are generated by the Higgs mechanism at the same scale ~ vev = <H>
- not (yet) any direct experimental evidence supporting the existence of tree-level Yukawa couplings Y_f
- present measurements of H → bb and H → ττ decays have large errors → still compatible with vanishing Yukawas
- a direct measurement of top quark coupling (tt H) is missing
- ChSB and EWSB can have different mechanisms: ChsB → compositeness, extra-dimensions, technicolor...

Naive Fermio-Phobic Higgs scenario

NO Yukawa couplings at tree-level

- Higgs mechanism gives mainly rise to EWSB and Mw,Mz
- but is not responsible for ChSB and fermion masses

Advantages

Fermiophobia lowers the vacuum stability bound on Higgs

M_H = 125 GeV consistent with no NP below Planck scale

Giardino, Kannike, Raidal, Strumia, PLB 718 (2012)

For M_H ~ [100,110,125] GeV : BR(γγ)FP ~ [110,30,7] x BR(γγ)SM

Naive Fermio-Phobic Higgs production mechanisms

no gluon-gluon fusion

VBF fusion dominant mechanism

harder pT spectrum -> better S/B !

Naive FP Higgs with M_H=125 GeV excluded at 99 % CL

CMS-HIG-12-045

- NFP Higgs predicts μ=1 @ M_μ=123 GeV
- higher μ predicted in WW, ZZ, γγ when VBF and VH tagging are applied

observed rates in VBF and VH are much smaller.

- above results do not take into account effect of Radiative Corrections
- RC can suppress BRs of H → γγ, WW,ZZ (depending on the NP scale Λ where Yukawa's are assumed to be vanishing)
- Yukawa couplings cannot be kept vanishing at any scale
- fermion masses Yukawa radiatively generated EG, Mele, PRD 82 (2010)

Inclusive production

EG,B.Mele,M.Raidal PLB 716 (2012)

Naïve FP predicts $\mu = 1 @ M_{H} = 123$ GeV, while RC can reduce it $\Lambda \rightarrow$ scale where Yukawa couplings are vanishing

Effects of radiative corrections on

$BRFP(\Lambda) / BRFP(0): MH = 125 GeV$

reduction < 10 - 20% for $\Lambda \sim 10^{10} - 10^{16}$ GeV

EG,Mele,Raidal PLB 716 (2012)

Can SUSY be ruled out if we find that Yukawa couplings are vanishing at tree-level ?

Vanishing Yukawa's in MSSM

- impact on MSSM would be dramatic
- → whole MSSM strongly disfavored ! vanishing Yukawas → MH < MZ</p>

switching off Yukawa couplings in MSSM is not as smooth as in SM

Failure of MSSM in the FP limit

Fermiophobic limit: $y_t \rightarrow 0$

$$\Delta M_h^2 = -\frac{3v^2 \sin^2 \beta}{2\pi^2} \frac{a_t^4}{48M_S^4} < 0$$

we cannot get mH > mZ and even more ~125 GeV

mH < mZ >> MSSM is ruled out

FP Higgs if SUSY -> cannot be just MSSM-like

Advantages of SUSY Fermiophobia

- Fermiophobic Higgs can cure some SUSY problems

$$N_c y_t^4/g^4 \sim 25$$

- removes little SUSY hierarchy problem
- squarks and sleptons masses of 2-3 TeV become now completely Natural
- FCNC and CP problems automatically solved
- SUSY effects in FCNC processes much suppressed

Fermiophobic NMSSM viable

EG, Kannike, Mele, Racioppi, Raidal, PRD 86 (2012)

Z₃ symmetric FP NMSSM superpotential

$$\mathcal{W} = \lambda SH_uH_d + \frac{k}{3}S^3$$

and S, H_u, H_d soft terms

$$\mathcal{L}_{ ext{soft}}^{S,H} = -\left(m_{h_u}^2 h_u^\dagger h_u + m_{h_d}^2 h_d^\dagger h_d + m_s^2 s^\dagger s
ight) - \left(a_\lambda s h_u h_d + rac{1}{3}a_k s^3 + h.c.
ight)$$

where

- s is the scalar component of S
- Z₃ is also used in order to get fermiophobia
- ► $X_{H_u} = X_{H_d} = X_S = 1$ and $X_f = 0 \Rightarrow y_f, a_f = 0$ But also other possible configurations (see 1204.0080)

BR(H → γγ) can be decreased → reducing the tension in VBFxBR(γγ) rates
but without ggH coupling the FB NMSSM is disfavored by observed inclusive production rates of H → γγ (which requires a ggH coupling)

but ggH coupling can be generated by loop of squarks alone !

 This requires large A-terms if Yukawa couplings are vanishing (EG, Racioppi work in progress)
 FP NMSSM would require a completely new strategy search at LHC

Wrong sign in Yukawa couplings: $Yf \rightarrow - Yf$ (suggested by the fits)

cure: requires new physics at TeV scale

Giardino, Kannike, Raidal, Strumia, PLB 718 (2012)

CMS-HIG-12-045

■ Negative solutions for K_F mainly comes from $H \rightarrow \gamma \gamma$ ■ Sign $[A^{H}_{1/2}(\text{loop of top})] = - Sign[A^{H}_{1}(\text{loop of W})]$

$$\Gamma(H \to \gamma \gamma) = \frac{G_{\mu} \alpha^2 M_H^3}{128 \sqrt{2} \pi^3} \left| \sum_f N_c Q_f^2 A_{1/2}^H(\tau_f) + A_1^H(\tau_W) \right|^2 \qquad \tau_i = M_H^2 / 4M_i^2$$

- Changing the sign of top-Yukawa coupling improves the fit in H $\rightarrow \gamma\gamma$: destructive interferences turn out to be constructive
- Is any process allowing to directly constrain the sign of top-Yukawa coupling ? → YES

How to disentangle the sign of top Yukawa coupling

Flipping the sign of Yukawa couplings has dramatic consequences for the EWSB

relative sign of Hff and HWW couplings is physical

unitarity and renormalizability are spoiled

■ unitarity in V_L V_L → f f → recovered by adding new weakly interacting resonances (Higgs-boson-like) or by infinite tower of strongly coupled resonances

If the scale of unitarity violation is high enough then the low energy processes should be insensitive to UV-completion

Sensitive process to the sign of top-Yukawa

Biswas, EG, Mele JHEP 1301 (2013)

 $q \ b \to t \ q' H \longrightarrow t \ q' \gamma \gamma$ with signature of $\mathbf{H} \twoheadrightarrow \gamma \gamma$

Two scenarios considered

Universal Yukawa rescaling that is assuming just one free parameter $C_f = C_t$ (and $C_V = 1$) both in production and decay amplitudes. $BR_{\gamma\gamma}$ is then a function of C_t , which enters both the $H \to \gamma\gamma$ width and the Higgs total width through C_f ;

C_t and **BR**($\gamma\gamma$) as independent parameters $C_V = 1$, with C_t affecting only production cross sections, and $BR_{\gamma\gamma}$ describing the overall effect of new physics on the Higgs decay rate.

SM total $\sigma \times BR(\gamma\gamma)$ is small

 $\begin{aligned} \sigma(q\,b \to t\,q'H)^{SM} &\simeq 15.2 \,\text{fb} & \text{at} \quad \sqrt{s} = 8 \,\text{TeV} \\ \sigma(q\,b \to t\,q'H)^{SM} &\simeq 71.8 \,\text{fb} & \text{at} \quad \sqrt{s} = 14 \,\text{TeV} \end{aligned}$

 $BR^{SM}_{\gamma\gamma} \simeq 2.29 \cdot 10^{-3}$

For $C_{F} < 0 \rightarrow \sigma$ expected to grow up due to unitarity breaking

BR($\gamma\gamma$ **)** mostly sensitive to a reduction of magnitude $|C_{F}|$

 $\left| \Lambda = 12\sqrt{2}\pi \frac{v^2}{m_t \left| c_F - c_V \right|} \right| \sim 9.3 \text{ TeV}$

scale of unitarity breaking

Farina, Grojean, Maltoni, Salvioni, Thamm 1211.3736

same process but with H → bb signature

Enhancement factors versus C

Irreducible backgrounds for pp \rightarrow t q H ($\rightarrow \gamma \gamma$)

ullet we are looking for top decaying hadronically $t o b \, q \, q'$

ullet final state bckg consists of $ightarrow \, 2\,\gamma + b \, + (\geq \, 3\,j)$.

irreducibles bckg processes

$$\begin{array}{rcl} pp & \rightarrow & 2\gamma + t + j \,, \\ pp & \rightarrow & 2\gamma + \overline{t} \,t \,, \\ pp & \rightarrow & 2\gamma + b + 3 \,j \end{array}$$

optimized selection cuts

 $p_T^{\gamma_1} > 40 \text{ GeV}, \quad p_T^{\gamma_2} > 30 \text{ GeV}, \quad p_T^{j,b} > 25 \text{ GeV}, \quad |\eta_{\gamma,b}| < 2.5, \quad |\eta_j| < 4.5$ $\Delta R_{i,j} = \sqrt{\Delta \eta_{i,j}^2 + \Delta \phi_{i,j}^2} > 0.4$

bckg well under control

an integrated Luminosity of L = 60 fb⁻¹ would give 10 signal events versus 0.3 of bckg overall the negative range -1.5 < C₁ <0

SM would require HL-LHC to reach an observable event statistics

Including different decay channels can dramatically improve the significance already with data at 8 TeV (Biswas, Margaroli, Mele, work in progress)

Can be the 125 GeV resonance an Higgs-boson imposter?

Spin-1 is ruled out while spin-2 case will be tested soon

Let's focus on the case of a scalar-like imposter

Dilaton imposter (χ **)** \rightarrow same couplings as SM

$$\mathcal{L}_{\chi V_{1}V_{2}} = c_{\chi V} \left(\frac{2m_{W}^{2}}{v} \chi W_{\mu}^{+} W^{-\mu} + \frac{m_{Z}^{2}}{v} \chi Z_{\mu} Z^{\mu} \right) + c_{\chi g} \frac{\alpha_{s}}{12\pi v} \chi G_{\mu\nu}^{a} G^{a\,\mu\nu} + c_{\chi\gamma} \frac{\alpha}{8\pi v} \chi F_{\mu\nu} F^{\mu\nu} + c_{\chi Z\gamma} \frac{\alpha}{8\pi v s_{w}} \chi F_{\mu\nu} Z^{\mu\nu}$$

EW singlet imposter (S)

$$\mathcal{L}_{sV_{1}V_{2}} = \kappa_{W} \frac{\alpha}{8\pi m_{s} s_{w}^{2}} s W_{\mu\nu}^{+} W^{-\mu\nu} + \left(\kappa_{W} \frac{c_{w}^{2}}{s_{w}^{2}} + \kappa_{B} \frac{s_{w}^{2}}{c_{w}^{2}}\right) \frac{\alpha}{16\pi m_{s}} s Z_{\mu\nu} Z^{\mu\nu} \\ + \kappa_{g} \frac{\alpha_{s}}{16\pi m_{s}} s G_{\mu\nu}^{a} G^{a\,\mu\nu} + (\kappa_{W} + \kappa_{B}) \frac{\alpha}{16\pi m_{s}} s F_{\mu\nu} F^{\mu\nu} \\ + \left(\kappa_{W} \frac{c_{w}}{s_{w}} - \kappa_{B} \frac{s_{w}}{c_{w}}\right) \frac{\alpha}{8\pi m_{s}} s F_{\mu\nu} Z^{\mu\nu}, \\ + \left(\kappa_{W} \frac{c_{w}}{s_{w}} - \kappa_{B} \frac{s_{w}}{c_{w}}\right) \frac{\alpha}{8\pi m_{s}} s F_{\mu\nu} Z^{\mu\nu}, \\ \mathbf{S}^{\mathbf{C} \mathbf{\gamma}} \mathbf{Coefficient of same} \\ \mathbf{S}^{\mathbf{C} \mathbf{\gamma}} \mathbf{C}^{\mathbf{C} \mathbf{M}} \mathbf{C}^{\mathbf{C} \mathbf{M}} \mathbf{C}^{\mathbf{M}} \mathbf$$

Model independent fits

Useful to consider the ratios $D_{W/Z} \equiv \frac{B\sigma_{gg}(WW)}{B\sigma_{ag}(ZZ)} = \frac{\Gamma(S \to WW)}{\Gamma(S \to ZZ)}$ $D_{\gamma/Z} \equiv \frac{B\sigma_{gg}(\gamma\gamma)}{B\sigma_{gg}(ZZ)} = \frac{\Gamma(S \to \gamma\gamma)}{\Gamma(S \to ZZ)} ,$ $D_{Z\gamma/Z} \equiv \frac{B\sigma_{gg}(Z\gamma)}{B\sigma_{gg}(ZZ)} = \frac{\Gamma(S \to Z\gamma)}{\Gamma(S \to ZZ)} \ .$

20

15

2 10

5

Predicted ratio

Predictions for NOT EW-singlet but a custodial singlet and 5-plet

$$D_{W/Z}^{(h)} = 8.16$$
, $D_{W/Z}^{(h_5)} = \frac{1}{4} D_{W/Z}^{(h)} = 2.04$

EW-singlet like Dilaton (including RS radion) imposters are disfavored (observed P_{g/V} is in agreement with SM) $P_{g/V} \equiv \frac{B\sigma_{gg}(\gamma\gamma)}{B\sigma_{VBF}(\gamma\gamma)} \qquad P_{g/V}^{(D)} = 140 \times P_{g/V}^{(SM)} \sim 1700$

Conclusions

- A Higgs-like signal has been observed with 125 GeV mass
- Good consistency with SM Higgs -> dramatic implications for BSM scenarios
- **MSSM** is disfavored \rightarrow new scenarios like NMSSM seems viable, but large λ couplings needed to ameliorate the SUSY little fine-tuning problem
- A composite PNGB Higgs has almost same coupling as SM, more statistics is needed to test this scenario (HL-LHC) or ILC
- Precise measurements of Higgs couplings to fermions are crucial for understanding the origin of flavor problem and fermion masses
- Fermiophobic naïve Higgs is ruled out for mH=125 GeV -> light NP is required to make it viable -> dramatic implications for flavor physics if confirmed
- sign of Yukawa coupling can be tested soon at LHC via pp → H t q process → dramatic implications for NP at TeV scale if wrong sign would be confirmed
- EW singlet Higgs imposters are ruled out, including dilaton and RS radion. NOT-EW singlet Higgs imposters are still viable → more statistics required

Backup slides

$FP(VBF+VH) : H \rightarrow WW^*$

For mH=124-126 GeV, FP Higgs has a smaller inclusive WW* production rate with respect to SM!

FP NMSSM with $tan(\beta)=5$

Increasing tan(b) > 1, deviations from FP SM on BR(H $\rightarrow \gamma\gamma$) and BR(H $\rightarrow Z\gamma$) are reduced

MSSM impact on couplings

Hall, Pinner, Ruderman '11

Fermiophobic NMSSM

- Minima of V: general case is quite complicated
- there is a choice of parameters that allows no mixing between singlet S and h_u, h_d

$$egin{array}{lll} a_\lambda &= 0 \ k &= \lambda \ ext{tan} \ eta &= 1 \end{array}$$

tanβ=1 is allowed since no low energy constraints come from Yukawa couplings

we restrict our model to this special set of parameters → natural choice → more predictive

Strategy

- ► $M_h = \frac{|\lambda|v}{\sqrt{2}} = 125$ GeV, $M_1 = 100$ GeV \rightarrow fixed-parameters
- ► $(M_{H^{\pm}}, M_{\chi_L^+}) \rightarrow (|\mu|, M_2)$ → free-parameters

•
$$M_{\chi_L^0} > M_h/2 \Rightarrow h \nleftrightarrow \chi_i \chi_j \rightarrow \text{to require neutralino LSP}$$

 $\Rightarrow R - \text{parity} \Rightarrow h \nrightarrow \chi_i^* \chi_j, \chi_i^* \chi_j^*$

FP SUSY contributions to h $\rightarrow \gamma\gamma$, γ **Z**

