

S.Vecchi- INFN Ferrara, Italy

on behalf of the LHCb collaboration

9th Franco-Italian meeting on B physics, LAPP Annecy Annecy, February, 18th-19th 2013

Outline

- Physics motivations
- ϕ_s measurement:
 - analysis of $B_s^0 \to J/\psi \pi^+ \pi^-$ analysis of $B_s^0 \to J/\psi \phi$
- Solving the ambiguities on ϕ_s and $\Delta \Gamma_s$
- $B_s^0 \to \phi \phi$: initial steps toward ϕ_s
- Further constraints on ϕ_s and $\Delta\Gamma_s$: measurement of the effective lifetime
- Summary

I will present the latest public results by LHCb (2011 data sample, pp collisions at $\sqrt{s} = 7 \text{TeV}, 1 \text{fb}^{-1}$)

LHCb references are in yellow box

Physics motivations

 ϕ_s arises from the interference of direct decay and decay via $B_s^0 - \bar{B}_s^0$ oscillations: $\phi_s = \phi_M - 2\phi_D$

 $B^0_s
ightarrow J/\psi X$ is a b
ightarrow c ar c s transition

- In SM, assuming tree decays dominate and so neglecting sub-leading penguin contributions (φ_D ~ 0), φ_s = -2β_s = arg(-V_{ts}V^{*}_{tb}/V_{cs}V^{*}_{cb})
- SM expectation: $\phi_s = -0.0364 \pm 0.0016$ rad http://cmkfitter.in2p3.fr
- if new particles contribute to the $B_s^0 \bar{B}_s^0$ box-diagram ϕ_s can be enhanced: $\phi_s = \phi_s^{SM} + \phi_s^{NP}$ \rightarrow precise measurement of ϕ_s can reveal presence of NP

Experimental status:

- **DØ** $8 \mathrm{fb}^{-1}$, $\phi_s = -0.55^{+0.38}_{-0.36}$ rad
- CDF 9.6fb⁻¹, ϕ_s : [- π , -2.52]U[0.60, 0.12]U[3.02, π] rad @68% CL
- Atlas $\phi_s = 0.22 \pm 0.41 \pm 0.10$ rad
- \blacksquare LHCb: $\phi_s=0.15\pm0.18\pm0.06~{\rm rad}~(B^0_s\to J/\psi\phi$, 0.377fb $^{-1}$)

Analysis of $B^0_s o J/\psi \pi^+\pi^-$ decay

 $\begin{array}{l} B_s^0 \to J/\psi \pi^+ \pi^- \text{ is a promising channel to measure} \\ \phi_s \colon \mathcal{B} \text{ is } 19.79 {\pm} 0.47 {\pm} 0.52\% \text{ of } B_s^0 \to J/\psi \phi \end{array}$

- Dalitz analysis show that π⁺π⁻ is dominated by S-wave: >97.7% @95% C.L
 Phys. Rev. D 86, 052006 (2012)
 - $PS \rightarrow VS$: CP-odd pure eigenstate
- $\rightarrow~$ "only" a tagged time-dependent analysis is required to measure $\phi_{\rm s}$

 $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ selection:

- based on a Boosted Decision Tree
- S~7400 events 1fb⁻¹ (2011)

Phys. Lett. B 713 (2012) 378386

Amplitudes for $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

 $B_s^0\to J/\psi\pi^+\pi^-$ is a pure CP-odd final state ($\pi\pi$ in s-wave) \to simple differential decay rates:

$$\begin{split} &\Gamma(B^0_s \to J/\psi(\pi\pi)_s) \propto e^{-\Gamma_s t} \{ e^{\Delta\Gamma_s t/2} (1 + \cos\phi_s) + e^{-\Delta\Gamma_s t/2} (1 - \cos\phi_s) - \sin\phi_s \sin(\Delta m_s t) \} \\ &\Gamma(\bar{B}^0_s \to J/\psi(\pi\pi)_s) \propto e^{-\Gamma_s t} \{ e^{\Delta\Gamma_s t/2} (1 + \cos\phi_s) + e^{-\Delta\Gamma_s t/2} (1 - \cos\phi_s) + \sin\phi_s \sin(\Delta m_s t) \} \end{split}$$

Time dependent asymmetry A(t) is a sinusoidal function of the time:

- amplitude $\propto \sin \phi_s$
- initial flavour tagging is required
- measured amplitude is diluted by the probability of mistag (ω) and by limited time resolution (σ_t)

 $\mathcal{A}(t) \simeq \sin \phi_{s} \times (1 - 2\omega) \times e^{-(\Delta m_{s}\sigma_{t})^{2}/2} \times \sin(\Delta m_{s}t) = \sin \phi_{s} \times \mathcal{D}_{tag} \times \mathcal{D}_{t} \times \sin(\Delta m_{s}t)$

If $\Delta\Gamma_s \neq 0$ also the untagged sample is sensitive to ϕ_s

$$\Gamma((B_s^0 + \bar{B}_s^0) \to J/\psi(\pi\pi)_s) \propto e^{-\Gamma_s t} \{ e^{\Delta\Gamma_s t/2} (1 + \cos\phi_s) + e^{-\Delta\Gamma_s t/2} (1 - \cos\phi_s) \}$$

Tag the initial B flavour

OS tagging: exploits the properties of the decays of the *b*-hadron opposite to the signal *B*

• μ , e $(b \rightarrow cl^- \bar{\nu}_l)$, K $(b \rightarrow c \rightarrow s)$, Q_{vtx} (inclusive secondary vertex reconstruction)

SS tagging: exploit the hadronization process of the signal B, or in the decays of excited states B^{**}

SS π (tag the B_d and B^+), SSK (tag the B_s) LHCb-CONF-2012-033

Tag the initial B flavour

For each event the Flavour Tagging determine:

- **tag decision**: $q = \pm 1,0$ for the initial signal *b*-hadrons containing a \overline{b}/b quark (based on the charge of the tagger)
- **mistag probability**: η based on a *Neural Network* trained on MC.
 - Calibrated using $B^+ \rightarrow J/\psi K^+$ data and validated using different control channels.
 - used ev-by-ev as an estimate of the mistag: ω = p₀ + p₁(η − ⟨η⟩)

 $\begin{array}{c|c} p_0 & p_1 & \langle \eta \rangle \\ \hline 0.392 {\pm} 0.002 {\pm} 0.009 & 1.035 {\pm} 0.021 {\pm} 0.012 & 0.391 \end{array}$

Tagging performance in $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$:

- $\varepsilon_{tag}(1-2\omega)^2 = 2.43 \pm 0.27\%$ OS tagging only ($\varepsilon_{tag} \sim 33\%$, $\mathcal{D}_{tag} \sim 0.72$)
- update with SSK tagging will be public soon ($\sim +30\%$) LHCb-CONF-2012-033

Time resolution

Time resolution depends on time \rightarrow use ev-by-ev estimated resolution:

$$\mathcal{R}(t-\tau|\sigma_t) = \sum_{i=1}^2 \frac{f_i}{\sqrt{2\pi}S_t^i \sigma_t} e^{-\frac{(t-\tau-\mu_t)^2}{2(S_t^i \sigma_t)^2}}$$

- tune S_t^i , μ_t and f_i parameters to match the distribution of "prompt- J/ψ "+ 2π from a sample of trigger unbiased (no IP cuts)
- average time resolution $\langle \sigma_t \rangle \sim 40$ fs ($\mathcal{D}_t \sim 0.78$)

Time acceptance trigger and off-line selections introduce a bias to the decay time resolution:

- $A(t) = C \frac{[a(t-t_0)]^n}{1+[a(t-t_0)]^n}$
- parameters extracted fitting the time distribution of $B^0 \rightarrow J/\psi K^{*0}$ and cross-check on $B_s^0 \rightarrow J/\psi f_0$

Fit and results

Multidimensional fit to the observables $(m, t, \sigma_t, q, \eta)$

- signal: double gaussian mass, physical amplitudes (\rightarrow slide 5)
- background mainly combinatorial: exponential mass distribution, double exponential time distribution
- \blacksquare small contribution of $B^0_s \to J/\psi \eta'$

time distribution convoluted with the signal resolution function and corrected for the time acceptance.

External (gaussian) constraints:

- $\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \text{ ps}^{-1}$ Phys. Lett. B 709 (2012) 177
- $\Gamma_s = 0.657 \pm 0.009 \pm 0.008 \text{ ps}^{-1}$
- $\Delta\Gamma_s > 0$ (slide 15)
- $\Delta \Gamma_s = 0.123 \pm 0.029 \pm 0.011 \text{ ps}^{-1}$ Phys. Rev. Lett. 108 (2012) 101803
- tagging calibration parameters (slide 7) stat. and systematic uncertainties.

possible effect of a direct CP violation considered (consistent with no CPV)

$B^0_s ightarrow J/\psi \phi$ channel: the "golden mode"

Golden mode for the ϕ_s measurement is $B_s^0 \rightarrow J/\psi \phi (\rightarrow K^+ K^-)$ channel

- dominant contribution is $B_s^0 \to J/\psi\phi$: $\mathcal{B} = (10.50 \pm 0.13 \pm 0.64 \pm 0.82) \times 10^{-4}$, arXiv:1302.1213
 - PS → VV decay: superimposition of CP-odd and CP-even eigenstates
- small contribution of K^+K^- in S-wave under the ϕ ($m_{\phi} \pm 12$ MeV): $f_0(980)$ + "non-resonant" ($1.1 \pm 0.1^{+0.2}_{-0.1}$)% arXiv:1302.1213
 - $PS \rightarrow VS$ decay: CP-odd pure eigenstate
- $\rightarrow\,$ angular analyses is required to disentangle the amplitudes

 $B_s^0
ightarrow J/\psi \phi$ is a very clean signal:

- S~21200 events in 1fb⁻¹ (2011)
- B/S few percent t > 0.3ps suppress most of the prompt background

Amplitudes for $B_s^0 \rightarrow J/\psi\phi$

 $B^0_s \to J/\psi \phi$ is a coherent sum of CP-even and CP-odd final state \to time&angular analysis² is needed:

$$rac{d^4 \Gamma(B_s^0 o J/\psi \phi)}{dt \, d\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

10 terms = 3 amplitudes for P-wave, 1 for S-wave + interferences

 $h_k(t) = N_k e^{-\Gamma_s t} [a_k \cosh(\Delta \Gamma_s t/2) + b_k \sinh(\Delta \Gamma_s t/2) \pm c_k \cos(\Delta m_s t) \pm d_k \sin(\Delta m_s t)]$ coefficients a_k , b_k , c_k and d_k contain the dependency on relative strong phases and on ϕ_s .

\boldsymbol{k}	$f_k(heta,\psi,arphi)$	N_k	a_k	b_k	c_k	d_k		
1	$2 \cos^2 \psi \left(1 - \sin^2 \theta \cos^2 \phi\right)$	$ A_0(0) ^2$	1	$-\cos\phi_s$	0	$\sin \phi_s$		
2	$\sin^2\psi\left(1-\sin^2\theta\sin^2\phi\right)$	$ A_{ }(0) ^2$	1	$-\cos\phi_s$	0	$\sin \phi_s$		
3	$\sin^2\psi\sin^2\theta$	$ A_{\perp}(0) ^2$	1	$\cos \phi_s$	0	$-\sin\phi_s$		
4	$-\sin^2\psi\sin2 heta\sin\phi$	$ A_{\parallel}(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}$		
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2 \theta \sin 2\phi$	$ A_0(0)A_\parallel(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$-\cos(\delta_{\parallel}-\delta_{0})\cos\phi_{s}$	0	$\cos(\delta_{\parallel}-\delta_{0})\sin\phi_{s}$		
6	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin 2\theta \cos \phi$	$ A_0(0)A_\perp(0) $	0	$-\cos(\delta_{\perp}-\delta_0)\sin\phi_s$	$\sin(\delta_\perp - \delta_0)$	$-\cos(\delta_{\perp}-\delta_0)\cos\phi_s$		
7	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$	$ A_{\rm S}(0) ^2$	1	$\cos \phi_s$	0	$-\sin\phi_s$		
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$	$ A_{\rm S}(0)A_{\parallel}(0) $	0	$-\sin(\delta_{\parallel}-\delta_{ m S})\sin\phi_s$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$-\sin(\delta_{\parallel}-\delta_{ m S})\cos\phi_s$		
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$	$ A_{ m S}(0)A_{\perp}(0) $	$\sin(\delta_{\perp}-\delta_{ m S})$	$\sin(\delta_\perp - \delta_{ m S})\cos\phi_s$	0	$-\sin(\delta_{\perp}-\delta_{ m S})\sin\phi_s$		
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	$ A_{\rm S}(0)A_0(0) $	0	$-\sin(\delta_0 - \delta_{ m S})\sin\phi_s$	$\cos(\delta_0-\delta_{ m S})$	$-\sin(\delta_0-\delta_{ m S})\cos\phi_s$		

some sensitivity to ϕ_s also from untagged sample.

^aChoice: transversity frame, $\Omega = (heta, \psi, arphi)$

Resolution, acceptance and tagging in $B^0_s ightarrow J/\psi \phi$

- **angular acceptance:** from MC (re-weighting to match the momentum of *K*)
- angular resolution: negligible effects
- time resolution: ev-by-ev (like for B⁰_s → J/ψπ⁺π⁻) scale factor calibrated using unbiased, "prompt" J/ψφ events (⟨σ_t⟩ = 45 fs, D_t = 0.73)
- time acceptance: non parametric function extracted from unbiased trigger sample + loss of efficiency at large time due to reconstruction inefficiencies for tracks displaced from the beam line ("a-posteriori" correction on the lifetime Γ_s)
- tagging: same strategy as in $B_s^0 o J/\psi \pi^+\pi^-$ (slide 7)
 - OS tagging only: $\varepsilon_{tag} D^2 = 2.29 \pm 0.07 \pm 0.26\% (\varepsilon_{tag} = 33\%, D_t \sim 0.74)$
 - update with SSK tagging will be public soon ($\sim +30\%$)

LHCb-CONF-2012-033

Fit and results

Multidimensional fit to the observables $(m, t, \Omega, \sigma_t, q, \eta)$

- signal: double gaussian mass, physical amplitudes (\rightarrow slide 11)
- background mainly combinatorial: exponential mass distribution, double exponential time distribution (from B_s sidebands)
- negligible contribution from mis-identified channels (i.e. $B^0 \rightarrow J/\psi K^{*0}$)

time distribution convoluted with the signal resolution function and corrected for the time acceptance.

External (gaussian) constraints:

- $\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \text{ ps}^{-1}$ Phys. Lett. B 709 (2012) 177
- $\Delta\Gamma_s > 0$ (slide 15)
- tagging calibration parameters (slide 7) stat. and systematic uncertainties.

neglected possible direct CP violation (systematic uncertainty)

Fit and results

LHCb-CONF-2012-002

Source	Γ_s	$\Delta \Gamma_s$	A_{\perp}^2	A_0^2	F_S	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_s
	$[ps^{-1}]$	$[ps^{-1}]$	_	÷		[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	-	-	-	-	-	-
Production asymmetry $(\pm 10\%)$	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay $(\pm 5\%)$	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

$$\phi_s = -0.001 \pm 0.101 \pm 0.027$$
 rad
 $\Gamma_s = 0.6540 \pm 0.0054 \pm 0.0066$ ps⁻¹
 $\Delta\Gamma_s = 0.116 \pm 0.018 \pm 0.006$ ps⁻¹

The fit is also able to find Δm_s :17.50 \pm 0.13ps^{-1}

Combined result of $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$: $\phi_s = -0.002 \pm 0.083 \pm 0.027$ rad includes 5% of systematic uncertainty due to mistag calibration and Δm_s

Phys. Rev. Lett. 108 (2012) 241801

The invariance of the decay rates under transformation $(\phi_s, \Delta\Gamma_s, \delta_{\parallel}, \delta_{\perp}) \rightarrow (\pi - \phi_s, -\Delta\Gamma_s, -\delta_{\parallel}, \pi - \delta_{\perp})$ lead to ambiguities of the values of ϕ_s and $\Delta\Gamma_s$ parameters. Solution: exploit the interference of S-wave and P-wave amplitudes using $B_s^0 \rightarrow J/\psi K^+ K^-$ channel

- \blacksquare The phase of P-wave amplitude raises rapidly around the ϕ mass
- The phase of S-wave amplitude has a smooth variation over the K⁺K⁻ invariant mass (far from resonaces poles)

 \rightarrow the phase difference S-P should fall rapidly for the "physical" solution, while should raise for "unphysical" solution^a.

Choose $\delta_s - \delta_\perp$ because it is the least correlated

^amethod introduced by BaBar while measuring the sign of $\cos(2\beta)$ in $B^0 \to J/\psi K_s \pi^-$

Solving the ambiguities on ϕ_s and $\Delta\Gamma_s$

Extend the m_{KK} mass range to 998-1050 MeV ($F_s = 7.2 \pm 1.6\%$ 4.5 σ difference from zero)

Solution I ($\Delta\Gamma_s > 0$ and $\phi_s \sim 0$) is the "physical" one (significance wrt flat is 4σ).

 $\Delta \Gamma_s > 0$ Phys. Rev. Lett. 108 (2012) 241801

 \rightarrow the B_s^L mass eigenstate that is almost CP=+1 is lighter and decays faster than the mass eigenstate that is almost CP=-1

$B_s^0 \to \phi \phi$

- $\blacksquare \; B^0_s \to \phi \phi$ promising channel. $b \to s \bar{s} s$ transition, proceeds via penguin decays
- SM prediction $\phi_s^{\phi\phi} < 0.02$ rad (cancellation)
- excellent channel to probe NP contribution to penguin loops
 - For a complete study of CPV full angular, tagged time-dependent analysis is required:
 - superposition of CP-even and CP-odd, + (KK) in s-wave like $B_s^0 \rightarrow J/\psi\phi$ (small, compatible with zero)
 - Asymmetry of triple products can reveal CPV

Clean signal of \sim 8k evts. in $1 {
m fb}^{-1}$ (2011) Phys. Lett. B 713 (2012) 369-377

$B_s^0 \to \phi \phi$: results

triple products asymmetry probe CPV:

$$\begin{aligned} A_U &= \frac{N^{U>0} - N^{U<0}}{N^{U>0} + N^{U<0}} \qquad U = \sin(2\Phi)/2 \\ A_V &= \frac{N^{V>0} - N^{V<0}}{N^{V>0} + N^{V<0}} \qquad V = \pm \sin \Phi \text{ (depending on the sign of } \cos \theta_1 \cos \theta_2^{-a} \text{)} \end{aligned}$$

previous measurement by CDF: Phys. Rev. Lett. 107 (2011) 261802

 $A_U = -0.007 \pm 0.064 \pm 0.018 \quad A_V = -0.120 \pm 0.064 \pm 0.016$

consistent with the hypothesis of CP conservation

Full angular-tagged time dependent analysis is being finalised (expected for Moriond 2013)

^aangles defined in the helicity frame

From an idea of Fleischer and Knegjens arXiv:1109.511:

• the information provided by the lifetimes of a pair of B_s^0 decays into pure CP-even and CP-odd final states is sufficient to determine ϕ_s and $\Delta\Gamma_s^{\ a}$:

 ${}^{s}\Gamma_{s} = (\Gamma_{s}^{L} + \Gamma_{s}^{H})/2 = \tau_{B_{s}}^{-1} \text{ and } \Delta\Gamma_{s} = \Gamma_{s}^{L} - \Gamma_{s}^{H}, A_{\Delta\Gamma_{s}}^{f} = -\frac{2\eta_{f}\cos(\phi_{s} + \Delta\phi_{f})}{1 + |\lambda|^{2}}$

Further constraints on ϕ_s and $\Delta\Gamma_s$: measurement of the effective lifetime

new measurement of τ_{KK} by LHCb using a dedicated unbiased trigger and a selection based on neural network: $\tau_{KK} = 1.455 \pm 0.046 \pm 0.006$ ps Phys. Lett. B716 (2012) 393-400

Further constraints on ϕ_s and $\Delta\Gamma_s$: measurement of the effective lifetime

new measurement of τ_{KK} by LHCb using a dedicated unbiased trigger and a selection based on neural network: $\tau_{KK} = 1.455 \pm 0.046 \pm 0.006$ ps Phys. Lett. B716 (2012) 393-400

new measurement of $\tau_{J/\psi f_0(980)}$ by LHCb relative to B^0_d lifetime in $B^0_d \rightarrow J/\psi K^{*0}$: $\tau_{J/\psi f_0(980)} = 1.700 \pm 0.014 \pm 0.001 \text{ ps}$ Phys. Rev. Lett. 109 (2012) 152002

Summary

- LHCb measurement of ϕ_s and $\Delta\Gamma_s$ in the analysis of $B_s^0 \rightarrow J/\psi \pi^+\pi^- \& B_s^0 \rightarrow J/\psi \phi$ are the world's best
- Solved the ambiguity on $\Delta\Gamma_s$ and ϕ_s
 - Update of the $B_s^0 \rightarrow J/\psi\phi$ and $B_s^0 \rightarrow J/\psi\pi^+\pi^-$ results with 2011 1fb⁻¹ data sample is expected soon (improved signal yield and tagging)

- Analysis of $B_s^0 \rightarrow \phi \phi$: triple products \rightarrow no CP violation
 - results of the full analysis are expected soon (Moriond 2013)
- Further constraints on ϕ_s and $\Delta\Gamma_s$ come from the measurement of B_s^0 effective lifetime in CP eigenstates
- $\rightarrow\,$ everything so far is consistent with Standard Model
 - Next: precision measurements ...
 - 2.0fb^{-1} taken in 2012 at $\sqrt{s} = 8 \text{TeV}$
 - Run2 at $\sqrt{s} = 14$ TeV
 - Upgrade (50fb⁻¹)
- $\rightarrow\,$ for sure $\ldots\,$ this is not the end $\ldots\,$