The Higgs candidate: experimental status

Centre

de Physique des Particules de Marseille

CPP

CPPM/IN2P3 - Aix-Marseille Université (Marseille, FRANCE)

9th Franco-Italian meeting on B physics - 18/02/2013

Introduction and outline

What do we know (experimentally) about the newly discovered boson?

[6 months ago]

Physics Letters B

Volume 716, Issue 1, 17 September 2012, Pages 1-29

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

Universally Available

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ATLAS Collaboration

Volume 716, Issue 1, 17 September 2012, Pages 30-61

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC *

Universally Available

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation.

CMS Collaboration

Introduction and outline

What do we know (experimentally) about the newly discovered boson?

Outline

- **1.** Reminder: SM Higgs production and decay
- 2. Analysis channels and latest LHC / Tevatron results
- **3.** Mass and Spin-Parity measurements of the observed state
- 4. Coupling properties measurements and compatibility with SM
- 5. Perspectives at HL-LHC and outlook

SM-Higgs production @ pp colliders

SM-Higgs decay

→ 5 main decay modes exploited: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4I$, $H \rightarrow WW \rightarrow IvIv$, $H \rightarrow \tau\tau$ and $VH \rightarrow Vbb$ [at low mass]

Colliders & Detectors performance

Experiment design value

CMS Integrated Luminosity, pp Data included from 2010-03-30 11:21 to 2012-12-06 00:32 UTC Recorded Luminosity [pb ⁻¹/0.1] 180 ATLAS Online Luminosity 2012: 2010, 7 TeV, 44.2 pb⁻¹ 160 $\sqrt{s} = 8$ TeV, Ldt = 20.8 fb⁻¹, $<\mu > = 20.7$ **2011, 7 TeV, 6.1** fb^{-1} 23 fb⁻¹ 140 $\sqrt{s} = 7$ TeV, $\int Ldt = 5.2 \text{ fb}^{-1}$, $<\mu > = 9.1$ 2012, 8 TeV, 23.3 fb⁻¹ at 8 TeV 120 Higgs discovery 100 2011 paper 80 6 fb⁻¹ HCP update at 7 TeV 60 40 2010 20 0.05 fb⁻¹ 0 0 at 7 TeV 5 10 15 20 25 30 35 40 45 2 Jul 1 May 2 Jun 1 APT 1 AUG 1 SEP 2 OCT 2 NOV 2 DEC Mean Number of Interactions per Crossing Date (UTC) Outstanding LHC and detector performance Price to pay is large pile-up Above design value (50 ns bunch Xing) L_{peak} up to 7.7.10³³ cm⁻²·s⁻¹ in 2012 at 8 TeV Many challenges to mitigate pile-up L_{delivered} ~23 fb⁻¹ (8 TeV) + 6 fb⁻¹ (7 TeV) impact at all levels: trigger, computing, ~90% of delivered collisions are used in reco/identification of physics objects, . ATLAS and CMS analyses [unfortunately, no time to further discuss these issues]

Also excellent performance of Tevatron ($L_{delivered} \sim 12 \text{ fb}^{-1}$) and DØ/CDF detectors

Latest channel combination @ LHC

Latest ATLAS and CMS results combining the 5 main decay channels

[p-value: probability that observation is compatible with background-only hypothesis]

Latest channel combination @

Tevatron

→ Complementarity on $H \rightarrow b\overline{b}$ channel between LHC and Tevatron

Mass measurement

[only missing parameter in SM Higgs sector]

> 2 high-resolution channels (H $\rightarrow\gamma\gamma$ and H \rightarrow ZZ \rightarrow 4I) used for mass measurement @LHC

Mass measurement

[only missing parameter in SM Higgs sector]

> 2 high-resolution channels (H $\rightarrow\gamma\gamma$ and H \rightarrow ZZ \rightarrow 4I) used for mass measurement @LHC

➔ Systematics dominated so far by photon energy-scale

Standard Model consistency

Latest results from electroweak fit w/wo Higgs mass measurement

1209.2716

→ A remarkably consistent picture

Spin studies with $H \rightarrow \gamma \gamma$

ATLAS-CONF-2012-168

Ρ_{γ,γ,}

P_{pp}

\Box From distribution of polar angle θ^* of the photons in the resonance rest frame

- Signal region: events within $\pm 1.5\sigma$ around the peak (m_H=126.5 GeV)
- Compare dN/d|cosθ*| for:
 - spin-0 hypothesis: flat before cuts
 - spin-2 hypothesis: ~ 1+6cos² θ * +cos⁴ θ * for G-like gg production [spin-1 hypothesis excluded by H $\rightarrow \gamma\gamma$ observation: Landau-Yang theorem]
- Normalisation and distribution of dN/d|cosθ*| for background from data (side-bands)

Expected sensitivity: 1.8σ separation between 0⁺ and 2⁺ hypotheses

Fit to data: compatibility within 0.5σ with spin-0 and 1.4σ with spin-2 (i.e. disfavoured at 91% CL)

Spin-parity studies with $H \rightarrow ZZ^{(*)} \rightarrow 4I$

ATLAS-CONF-2012-169

Pseudoscalar hypothesis (0⁻) excluded at >2.5σ level (under the assumption that the new boson has spin 0)

SM Higgs couplings

□ Higgs couplings to SM particles and link with production/decay modes at LHC

- Gauge couplings
- Yukawa couplings

not contribute to coupling uncertainties

Theoretical uncertainties need improvements for O(1%) level precisions

➢ Production: access to top (direct and gg→H loop) and W,Z couplings

Decays accessible at LHC: b, τ, W, Z, μ
 (direct) and γ (loop)

→ Link between our observables (event yields ∝ cross-sections*branching ratios) and Higgs couplings

Observables ↔ SM Higgs couplings

→ Link between event yields (cross-section * branching ratio) and Higgs couplings

$$\sigma \cdot BR(ii \to H \to ff) = \sigma_{SM} \cdot BR_{SM} \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2} \quad \sim \Gamma_i \cdot \Gamma_f / \Gamma_H$$

> Observed yield can be parametrized as SM prediction * coupling scale factor κ^2 (SM: $\kappa_i=1$)

Gauge couplings (coupling scale factors κ_W and κ_Z)

- Pure measurements from VBF/VH production and H→ZZ/WW
- For now: main constraints from $gg \rightarrow H \rightarrow WW/ZZ$ and W-loop from $H \rightarrow \gamma \gamma$

Vukawa couplings (coupling scale factors κ_b , κ_τ , κ_t , κ_μ)

- κ_b and κ_{τ} : main direct constraint from bb and $\tau\tau$ decays \rightarrow weak for now
- κ_t: can not be measured from Higgs decay. No sensitivity yet to ttH production, so main constraint comes from now from top-loop in gluon-fusion → very weak!
- κ_{μ} : need very high integrated luminosities

□ Total Higgs width (scale factor K_H)

- At LHC total Higgs width is not accessible [SM Γ_H~4 MeV @125 GeV and there exist invisible/undetectable decays]
- > only ratios of partial widths (~ square of coupling constants) can be measured [unless assumptions are made]

Current situation: Measurement channels

- Most ATLAS and CMS analyses for a given decay channels are divided in categories, some targeting a particular production mode
- Remark: none of the analyses targeting a particular production mode are 100% pure and all have an admixture of other production mechanisms !

	Untagged	VBF-tag	VH-tag	ttH-tag
H→ZZ	v			
н→ww	v	~	~	
H→bb			v	 Image: A start of the start of
Η→ττ	v	~	v	
н→үү	v	~	V (ATLA	S)

Luminosity used by most analyses is now ~13 fb⁻¹ (8 TeV) + 5 fb⁻¹ (7 TeV)

- Last ~8 fb⁻¹ (8 TeV) still to be included in the analyses
- Further optimisation of categorisation for best coupling sensitivity is underway

Signal strength per decay mode

Signal strength µ defined as observed event yield normalised to expected SM yield

Combined μ = 1.35 ± 0.19 (stat) ± 0.15 (syst) @125 GeV

Combined µ=0.88±0.21 @ 125.8 GeV

→ Agreement with SM expectations – precision on combined μ ~20 %

Signal strength per production mode

- Signal strength µ defined as observed event yield normalised to expected SM yield
- Production mechanisms associated with either top (ggF+ttH) or gauge (VBF+VH) couplings
- Production signal strengths are varied separately for each individual decay mode

Higgs coupling measurements (1/3)

- Most general coupling fit involves 7 partial widths and total Higgs width → dataset too limited
- Simplifications, using the recommended framework from the LHC-XS WG
- Under hypotheses, reduction of number of degrees of freedom \rightarrow several well motivated tests
 - Example 1: Couplings to fermions $(\kappa_F = \kappa_t = \kappa_b = \kappa_\tau)$ vs gauge couplings $(\kappa_V = \kappa_W = \kappa_Z)$

Main assumption: only SM particles contribute to Higgs total width ($\Gamma_{BSM}=0$)

➔ Agreement with SM expectations tested at 20-30% level

* best direct constraint from Tevatron (slide 8)

1209.0040

Higgs coupling measurements (2/3)

- Most general coupling fit involves 7 partial widths and total Higgs width → dataset too limited
- Simplifications, using the recommended framework from the LHC-XS WG 1209.0040
- Under hypotheses, reduction of number of degrees of freedom \rightarrow several well motivated tests
 - Example 2: Test presence of new particles in loops $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$

Main assumption: Direct couplings to known SM particles are standard and no extra contribution to Γ_{H}

 \rightarrow Agreement with SM expectations at better than 2σ

Higgs coupling measurements (3/3)

- Most general coupling fit involves 7 partial widths and total Higgs width → dataset too limited
- Simplifications, using the recommended framework from the LHC-XS WG
- Under hypotheses, reduction of number of degrees of freedom → several well motivated tests
 - Other examples: test custodial symmetry of W and Z bosons, test up/down and quark/lepton symmetries
 - More global fit still too weakly constrained

Model parameters	Assessed scaling factors (95% CL intervals)		
λ_{wz}, κ_z	λ_{wz}	[0.57-1.65]	
$\lambda_{wz}, \kappa_z, \kappa_f$	λ_{wz}	[0.67-1.55]	
κ _v	$\kappa_{\rm v}$	[0.78-1.19]	
ĸf	κ _f	[0.40-1.12]	
$\kappa_{\gamma}, \kappa_{g}$	κγ	[0.98-1.92]	
	κg	[0.55-1.07]	
$\mathcal{B}(H \to BSM), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \to BSM)$	[0.00-0.62]	
$\lambda_{\rm du},\kappa_{\rm v},\kappa_{\rm u}$	λ_{du}	[0.45–1.66]	
$\lambda_{\ell q}, \kappa_{v}, \kappa_{q}$	$\lambda_{\ell q}$	[0.00-2.11]	
	$\kappa_{\rm v}$	[0.58-1.41]	
	κ _b	[not constrained]	
$\kappa_v, \kappa_b, \kappa_\tau, \kappa_t, \kappa_g, \kappa_\gamma$	κ_{τ}	[0.00-1.80]	
0	κ_t	[not constrained]	
	κ _g	[0.43-1.92]	
	κ_{γ}	[0.81-2.27]	

1209.0040

→ More data needed for a more global fit (relaxing assumptions), to be further sensitive to presence of new physics and measure $\kappa_{t, \kappa_{\mu}}$ and self-coupling

CMS-PAS-HIG-12-04

LHC and HL-LHC projections

→ the LHC physics programme is in its early stage !

Higgs couplings at HL-LHC (1/4)

[more details in A. Nisati's talk tomorrow]

Typical precisions that can be achieved on couplings with 30-3000 fb⁻¹

- Measurement of Higgs couplings with 2011+2012 data (~30 fb⁻¹) → 15% on combined signal strength expected - precision of individual channels ~25-30% (H→γγ, ZZ, WW)
- With 300 fb⁻¹, precision of signal strength ~10% per channel expected at best (γγ, ZZ)
- Experimental uncertainties on most signal strengths reduced by factor ~ 2 or more when going from 300 to 3000 fb⁻¹ → < 5% uncertainty for best cases (γγ, ZZ) to ~20% (WW)
 - Addition of rare channels like VH (H→WW, ZZ) will improve the overall results and yield more precise measurements of W-coupling

ATLAS Preliminary (Simulation)

Higgs couplings at HL-LHC (2/4)

[more details in A. Nisati's talk tomorrow]

Typical precisions that can be achieved on couplings with 3000 fb⁻¹

- Without constraints, ratios of partial widths can be measured with typical precisions of 20-50% (5-25%) with ~300 fb⁻¹ (3000 fb⁻¹) per experiment
 - Ratios $\Gamma_{\gamma}/\Gamma_{z}$ and Γ_{t}/Γ_{g} probe new physics in $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ loops at 5-15% level
- Assuming Γ_{μ} (SM) and one scale factor for the fermion/vector sector

 \rightarrow measure **couplings** $\kappa_{\rm F}$ to 3-6% and $\kappa_{\rm V}$ to 2-4% with 3000 fb⁻¹ per experiment

General coupling fit (no assumption)

Minimal coupling fit (assumptions)

[NO invisible/undetectable contribution to Γ_{μ}]

	L 112				
		Uncertainty (%)			
nent	Coupling	$300 {\rm ~fb^{-1}}$		3000 fb^{-1}	
CMC projection		Scenario 1	Scenario 2	Scenario 1	Scenario 2
CIVIS projection	κ_{γ}	6.5	5.1	5.4	1.5
enario 1: 2012 systematics	κ_V	5.7	2.7	4.5	1.0
2012 Systematics	κ_g	11	5.7	7.5	2.7
theory syst: scaled by a factor 1/2	κ_b	15	6.9	11	2.7
other systematics scaled by $1/\sqrt{I}$	κ_t	14	8.7	8.0	3.9
	$\kappa_{ au}$	8.5	5.1	5.4	2.0

Scenario 1:

Scenario 2:

Higgs couplings at HL-LHC (3/4)

[more details in A. Nisati's talk tomorrow]

□ Measurements of rare decays with 3000 fb⁻¹

ATL-PHYS-PUB-2012-004

- ttH → ttγγ: 200 events, 6σ per experiment (factor 2 better than with 300 fb⁻¹)
 → measurement of top Yukawa coupling at ~10% level
 - H → μμ: one of the best channel to study Higgs coupling to fermions but very rare! Simple analysis → S/B~0.2%, 6σ per experiment (~2σ with 300 fb⁻¹) → measurement of Higgs-muon coupling κ_u at ~10% level

Higgs couplings at HL-LHC (4/4)

[more details in A. Nisati's talk tomorrow]

Measurement of Higgs self-coupling to firmly establish Higgs role in EWSB

In SM Lagrangian:

 $V(\Phi) = -\lambda v^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2$ $\lambda = \lambda_{SM} = M_H^2 / (2v^2)$

 \rightarrow appearance of Higgs self coupling interactions λ = Higgs self-coupling - λ_{ннн}~ λν~Μ_н²/∨

Quartic coupling not accessible, but tri-linear selfcoupling is: intereference effect in di-Higgs boson production [SM cross section is 34 fb at 14 TeV for $m_{\rm H}$ =125 GeV - 71/16 fb if $\lambda_{\rm HHH}$ =0/2 * SM]

- With 3000 fb⁻¹: 15 events, ~3σ observation per experiment for λ_{HHH} =1 expected from HH \rightarrow bbyy channel (BR~0.27%); HH \rightarrow bb $\tau\tau$ also promising
- ~ 30% measurement of $\lambda_{HHH}/\lambda_{SM}$ may be achieved by combining channels and experiments

 \rightarrow knowing M_H, check that Higgs potential is SM

Conclusions and outlook

□ The era of precise "Higgs measurements" has started

- So far, all measured properties are consistent with Standard Model expectations
- With LHC run I, expect per experiment from a SM Higgs: 4-5 σ from each of H→γγ, H→IvIv, H→4I; ~3 σ from H→ττ and from W/ZH→W/Z bb (already achieved by Tevatron); Separation 0⁺/2⁺ and 0⁺/0⁻ at 4σ level combining ATLAS and CMS
 - → First results with whole LHC run I statistics expected at Moriond next month

□ More data (approved LHC program, HL-LHC?, next facilities?) will be essential to:

- Measure nature and properties of the new boson with increasing precision. Ultimate (sub-% level?) coupling measurements at a future lepton collider? (linear/circular? √s?)
 - → Search for New Physics effects through deviations from SM predictions
 - Complementarity with flavour-physics programme
- Answer if natural Higgs or fine-tuned Higgs ? If natural: what stabilizes its mass (SUSY?)?

Complementarity of Higgs precision measurements with direct searches for New Physics @ high-energy frontier! The LHC run at 13 TeV will hopefully already give first hints!

The ATLAS detector

F. Hubaut (CPPM)

The CMS detector

9th Franco-Italian meeting on B-physics

ATLAS/CMS

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
TRACKER	Si pixels+ strips TRD \rightarrow particle identification B=2T $\sigma/p_T \sim 5 \times 10^{-4} p_T \oplus 0.01$	Si pixels + strips B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Brass-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T < 10$ % at 1 TeV standalone; larger acceptance	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

SM-Higgs decay

SM Higgs: decay braching ratio (BR) in %

Branching I	atios at 125	GeV:	
bb:	57.7%	ZZ:	2.6 %
WW:	21.5%	<i>γγ</i> :	0.23%
ττ	6.3 %		

Production cross-sections

Production cross-sections

Higgs field

→ M_H is the only free parameter in the SM Higgs sector (others fixed by weak gauge boson masses and gauge couplings)

SM Higgs couplings

Gauge couplings (to bosons)

Yukawa couplings (to fermions)

SM custodial symmetry $\rho = M_W^2 / (c_w^2 M_Z^2) = 1$ $\cos \theta_w = c_w = \sqrt{1 - s_w^2} = \frac{g}{\sqrt{g^2 + (g')^2}}, \$ ~0.88

 \rightarrow Proportionality of Higgs couplings to all particle masses

 $v = \frac{1}{(\sqrt{2}G_F)^{1/2}} = \frac{2m_W}{g}.$

$$\begin{array}{c} \square \mbox{ SM Higgs partial widths:} \\ (total width $\Gamma_{\rm H}$ @ 125 GeV = 4 MeV,} \\ dominated by bb ~57\%) \\ \end{array} \\ \begin{array}{c} \Gamma_{\rm WW} \ \alpha \ (2 \ M_{\rm W}^2/{\rm v})^2 \\ \Gamma_{\rm ZZ} \ \alpha \ (M_{\rm Z}^2/{\rm v})^2 \\ \Gamma_{\rm HH} \ \alpha \ (M_{\rm H}^2/{\rm v})^2 \\ \Gamma_{\rm WW} \ \alpha \ (1.6 \ \Gamma_{\rm WW} + 0.07 \ \Gamma_{\rm tt} - 0.7 \ \Gamma_{\rm Wt}) \\ \end{array} \\ \begin{array}{c} \rightarrow \mbox{ Wt interference} \\ \Gamma_{\rm gg} \ \alpha \ (1.1 \ \Gamma_{\rm tt} + 0.01 \ \Gamma_{\rm bb} - 0.12 \ \Gamma_{\rm bt}) \\ \end{array} \\ \begin{array}{c} \rightarrow \mbox{ Wt interference} \\ \rightarrow \mbox{ Wt interference} \\ \end{array} \\ \end{array}$$

Observables ↔ SM Higgs couplings

Production/ Decay	ggF	VBF	VH	ttH
H→ZZ	κ _g (κ _t , κ _b) · κ _z	$\kappa_{VBF}(\kappa_{W}, \kappa_{Z}) \cdot \kappa_{Z}$	κ _v • κ _z	κ _t · κ _z
н→ww	к _g (к _t , к _b) · к _w	$\kappa_{VBF}(\kappa_{W}, \kappa_{Z}) \cdot \kappa_{W}$	к _v • к _w	κ _t • κ _w
H→bb	κ _g (κ _t , κ _b) · κ _b	κ _{νβf} (κ _w , κ _z) • κ _b	к _v • к _b	κ _t • к _b
Η→ττ	$\kappa_{g}(\kappa_{t}, \kappa_{b}) \cdot \kappa_{\tau}$	$\kappa_{VBF}(\kappa_{W}, \kappa_{Z}) \cdot \kappa_{T}$	κ _v · κ _τ	κ _t · κ _τ
н→үү	κ _g (<mark>κ_t, κ_b)</mark> · κ _γ (κ _w , κ _t)	κ _{vbf} (κ _w , κ _z) • κ _γ (κ _w , κ _t)	κ _ν · κ _γ (κ _w , κ _t)	κ _t . κ _γ (κ _w , κ _t)
	alinge	16 · Cours		K K Coupling to

 K_F:Yukawa couplings
 K_V: Gauge couplings
 K_g, K_y: Coupling to photon and gluon through loop diagrams. They are functions of the other κ_i in SM

A remarkably consistent picture

Latest results from electroweak fit w/wo Higgs mass measurement

1209.2716

Parameter	Input value	Free in fit	Fit result incl. M_H	Fit result not incl. M_H	Fit result incl. M_H but not exp. input in row
$M_H \ [\text{GeV}]^{(\circ)}$	125.7 ± 0.4	yes	125.7 ± 0.4	94^{+25}_{-22}	94^{+25}_{-22}
M_W [GeV]	80.385 ± 0.015		80.367 ± 0.007	80.380 ± 0.012	80.359 ± 0.011
$m_t \; [\text{GeV}]$	173.18 ± 0.94	yes	173.52 ± 0.88	173.14 ± 0.93	$175.8^{+2.7}_{-2.4}$

F. Hubaut (CPPM)

9th Franco-Italian meeting on B-physics

Evolution of excess with time (July 2012)

ATLAS mass measurements

 $\Delta m_{\rm H} = m_{\rm H} (\gamma \gamma) - m_{\rm H} (4\ell) = 3.0 \pm 0.8 \text{ (stat)}_{-0.6}^{+0.7} \text{ (syst)} \text{ GeV} = 3.0 + 1.1 - 1.0 \text{ GeV}$

Taking mass scale systematic uncertainties and their correlations into account, compatibility of the two measurements estimated at 2.7σ level (~0.8% probability) [an alternative treatment of systematics yields a compatibility at 2.3σ level]

$H \rightarrow \gamma \gamma$: ATLAS latest results (Dec. 2012)

Local excess 6.1σ (3.3σ expected for SM Higgs)
 Global excess 5.4σ

$H \rightarrow \gamma \gamma$: ATLAS latest results (Dec. 2012)

 μ = 1.80 ± 0.3 (stat) $^{+0.21}_{-0.15}$ (syst) $^{+0.20}_{-0.14}$ (theory) @ **126 GeV**

Best mass fit: 126.6 ± 0.3 (stat) ± 0.7 (syst) GeV

$H \rightarrow \gamma \gamma$: ATLAS latest results (Dec. 2012)

$H \rightarrow \gamma \gamma$: ATLAS mass resolution

H→ZZ : ATLAS latest results (Dec. 2012)

Best mass fit: 123.5 ± 0.9 (stat) ± 0.3 (syst) GeV

μ= 1.3^{+0.5}-_{0.4} @123.5 GeV

CMS results $H \rightarrow \gamma \gamma$

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

$H \rightarrow \gamma \gamma$ candidate

CMS results $H \rightarrow ZZ$ (Nov. 2012)

1

For m(4I) = 121.5..130.5 GeV:

- Expected background: 6.5 events
- Expected signal (mH=126 GeV): 12.5 events
- Signal:Bckg ~ 2:1
- Observed: 17 events

local p-value 10 10⁻¹ 2σ 10⁻² 3σ 10⁻³ 10⁻⁴ 4σ 2D Fit 7+8TeV 10⁻⁵ Expected 10⁻⁶ CMS Preliminary $H \rightarrow ZZ \rightarrow 4L$ 5σ 10⁻⁷ s = 7 TeV, L = 5.05 fb⁻¹ vs = 8 TeV. L = 12.2 fb⁻¹ 10-8 120 170 180 110 130 140 150 160 m_⊔ [GeV]

- \rightarrow 4.5 σ (5.0 σ expected) local
- → μ=0.8±0.3 @ 126 GeV

Best mass fit: 126.2 ± 0.6 (stat) ± 0.2 (syst) GeV

CMS results $H \rightarrow ZZ$ (Nov. 2012)

Pseudoscalar hypothesis (0⁻) excluded at 2.5o level (under the assumption that the new boson has spin 0)

LHC and HL-LHC projections

Higgs couplings at HL-LHC

[very preliminary results]

Higgs couplings at HL-LHC

Precision needs on Higgs couplings

Measure Higgs couplings as precisely as possible: indirect hints of New Physics/SUSY if deviations

- X(125 GeV) discovery in 2012
- No sign of new physics in direct searches

Search for heavier particles predicted by **BSM** theories

□ Which precision on Higgs couplings would be desirable?

- New physics can lead to modified couplings (e.g. SUSY, composite Higgs)
- Percent level measurements would be sensitive to new physics at the TeV scale
 - Multi-TeV new physics needs sub-percent precision
 - Some models/parameters can give effects of O(5%)
- → more details in P. Janot seminar: http://indico.cern.ch/conferenceDisplay.py?confld=214133
- Remark: a mass measurement to O(100 MeV) is enough an does not contribute to coupling uncertainties [current impact on signal
- Theoretical uncertainties (mostly QCD) need improvements [Theory systematics ~15% for ggF and ttH (~5% for VBF and VH) production modes]

	ww	21.6
nd	gg	8.2
l strength < 4%]	ZZ	2.6
	rr	0.27
[BR 3-6%]	Zγ	0.16
	ΓH[MeV]	4.0

Decay

bb

ττ сс

μμ

BR [%]

57.9

6.4

2.8

0.022

н = 125 GeV

Unc. [%]

3.

6.

12.

6.

4.

10.

4.

5.

9.

4.

Precision needs on Higgs couplings

@ P. Janot: CERN seminar http://indico.cern.ch/conferenceDisplay.py?confld=214133

More details: H. Baer et al., "Physics at the International Linear Collider", in preparation, see http://lcsim.org/papers/DBDPhysics.pdf

Electroweak and top cross-section measurements

Inner error: statistical Outer error: total

Important ground for Higgs searches: most of processes are backgrounds for Higgs

All SM processes well measured and in good agreement with theory

MSSM Higgs

□ MSSM Higgs sector \rightarrow 5 Higgs bosons

- 3 neutral: CP even (h, H), CP odd (A)
- 2 charged: H[±]
- Two free parameters describe couplings at tree level :
 - m_{A} tanβ or m_{H+} tanβ with tanβ = v_{u}/v_{d} (ratio of Higgs VEV)
- Couplings to vector bosons suppressed and couplings to down-type fermions enhanced for large tanβ

MSSM neutral Higgs search

Neutral Higgs

- gluon-fusion and b-quark associated production are the most copious production modes
- Higgs couplings to b-quarks and tau-leptons enhanced compared to SM
- Search for Φ(h/H/A)→ττ (BR~10% at high tanβ), μμ (BR~0.04%) with/without b-tagged jets

- ➔ No excess above SM background
- \rightarrow Stringent tan β limits (~10) for low m_A

 $(m_h^{max} \text{ scenario: } m_h=125 \text{ GeV requires maximal stop mixing and heavy stops})$

MSSM charged Higgs search

Charged Higgs

- for $m_{H\pm} < m_t$, primary production mode is $t \rightarrow H^{\pm}b$
- for tan β <1, decay H[±] \rightarrow cs important (40% for m_{H±}=130 GeV)
- for tanβ>2, decay H[±]→τν dominates → 3 final states considered (lep. or had. decay of τ and W)

➔ No excess above SM background

→ H[±] allowed phase space heavily constrained (m_h^{max} scenario → tanβ>12-26 excluded for 90<m_{H±}<150 GeV)</p>

Assuming Br(H[±]→τ[±]ν)=100%, limits on Br(t→bH[±]) between 1 and 5% (significant improvements wrt Tevatron)

SUSY searches

F. Habaac (CEEPT)

Jui Hanco Itanan meeting on D physics

Non-SUSY searches

F. Hubaut (CPPM)

9th Franco-Italian meeting on B-physics