The Precise Measurement of the Angle y

(Results and Prospects @ 2017 from LHCb)

Wenbin Qian

LAPP Annecy-le-vieux (IN2P3-CNRS et Université de Savoie)

9th Franco-Italian meeting on B Physics February,2013

CKM Angle $\boldsymbol{\gamma}$

$\gamma = \arg\left[-V_{ud}V_{ub}^*/(V_{cd}V_{cb}^*)\right]$

> The least well known variable for unitarity constrain Babar: $\gamma = (69^{+17} \cdot 16)^{\circ}$ (arXiv:1301.1029) Belle: $\gamma = (68^{+15} \cdot 14)^{\circ}$ (CKM 2012) CKMFitter: $\gamma = (66 \pm 12)^{\circ}$ UTFitter: $\gamma = (76 \pm 10)^{\circ}$

 γ from other constrains: ~ 4.3°

Theory: δγ/γ~0.0000001°

➤ Can be accessed through treelevel transitions (i.e. B→DK) ➡ Test of standard model

Can be accessed through loop-level transitions (i.e. B_(s)→ππ(KK))
 Probe of new physics

Effective Yields

> Integrated luminosity and Energy (proportion to b cross section)

Designed: 2 fb⁻¹ @ 14 TeV
2010: 0.04 fb⁻¹ @ 7 TeV
2011: 1.0 fb⁻¹ @ 7 TeV
2012: 2.0 fb⁻¹ @ 8 TeV
2015-2017: 5-6 fb⁻¹ @ 13 TeV

2017 Compared to current publications (mainly based on 2011 data):

A factor of 9 in integrated luminosity A factor of 14 in production

Trigger, Selection etc.
 B decays with μμ
 ε (L0 x HLT) ~ 70-90 %
 B decays with hadrons
 ε (L0 x HLT) ~ 20-50 %

Improvement in 2012: #CPU: +10% Deferred trigger: +20%

Assuming a factor of 16 in effective yields

y in Open Charm Decays

Sensitivity of γ depends largely on r_B (affected by color-suppressed factor, ratio of CKM elements etc.)

γ Studies with B⁺ \rightarrow D⁰h⁺ (1)

> h is π (r_B~0.01) or K (r_B~0.1); K channels thus offer better power on γ measurement

> D⁰ can decay to KK, $\pi\pi$ (GLW modes)

Monday, February 18, 13

γ Studies with B⁺ \rightarrow D⁰h⁺ (2)

> h is π (r_B~0.01) or K (r_B~0.1); K channels thus offer better power on γ measurement

> D⁰ can decay to $K^-\pi^+$ or $K^+\pi^-$ (ADS mode)

$$R_{\rm ADS} = \frac{\Gamma(B^- \to D[\to \pi^- K^+]h^-) + \Gamma(B^+ \to D[\to \pi^+ K^-]h^+)}{\Gamma(B^- \to D[\to K^- \pi^+]h^-) + \Gamma(B^+ \to D[\to K^+ \pi^-]h^+)}$$
$$A_{\rm ADS} = \frac{\Gamma(B^- \to D[\to \pi^- K^+]h^-) - \Gamma(B^+ \to D[\to \pi^+ K^-]h^+)}{\Gamma(B^- \to D[\to K^- \pi^+]h^-) + \Gamma(B^+ \to D[\to K^+ \pi^-]h^+)}$$

First observation of $B^+ \rightarrow D^0 K^+ ADS$ mode: 5.1 σ

 $R_{ADS(K)} = 0.0152 \pm 0.0020 \pm 0.0004$ $A_{ADS(K)} = -0.52 \pm 0.15 \pm 0.02$ $4.0\sigma!!$ Systematic ~ Statistic/6 Combining GLW and ADS mode, we have 5.8\sigma! significance of direct CP

violation

γ Studies with B⁺ \rightarrow D⁰h⁺ (3)

CLEO-c information

> h is π (r_B~0.01) or K (r_B~0.1); K channels thus offer better power on γ measurement

> D⁰ can decay to $K_s\pi\pi$, K_sKK (GGSZ mode)

> Model dependent (amplitude analysis etc.) or model independent (using CLEO-c information) $x_{\pm} = \operatorname{Re}[r_B e^{i(\delta_B \pm \gamma)}] \qquad y_{\pm} = \operatorname{Im}[r_B e^{i(\delta_B \pm \gamma)}]$

$$\Gamma(B^{\mp} \to D[\to K_{\rm s}^0 \pi^+ \pi^-] K^{\mp}) \propto |f_{\mp}|^2 + r_B^2 |f_{\pm}|^2 + 2 \left[x_{\mp} \text{Re}[f_{\mp} f_{\pm}^*] + y_{\mp} \text{Im}[f_{\mp} f_{\pm}^*] \right]$$
From Bobar's flower equivalent.

From Babar's flavor specified Dalitz analysis

Phys. Rev. Lett. 95(2005) 121802

 γ Studies with B⁺ \rightarrow D⁰h⁺ (3)

> h is π (r_B~0.01) or K (r_B~0.1); K channels thus offer better power on γ measurement

> D⁰ can decay to $K_s \pi \pi$, $K_s KK$ (GGSZ mode); Model independent

Results with 690 signal in $K_s\pi\pi$ and 110 in K_sKK

$$x_{-} = (0.0 \pm 4.3 \pm 1.5 \pm 0.6) \times 10^{-2},$$

$$y_{-} = (2.7 \pm 5.2 \pm 0.8 \pm 2.3) \times 10^{-2},$$

$$x_{+} = (-10.3 \pm 4.5 \pm 1.8 \pm 1.4) \times 10^{-2},$$

$$y_{+} = (-0.9 \pm 3.7 \pm 0.8 \pm 3.0) \times 10^{-2},$$

Stat. Sys. CLEO-c input

Dominant sys. : no CP violation in $B \rightarrow D^0 \pi$ Can be avoided with large dataset

Sys. due to CLEO input will reduce for large statistical analysis

 γ Studies with B⁺ \rightarrow D⁰h⁺ (4)

Phys. Lett. B 718 (2012) 43, arXiv: 1209.5869

> h is π (r_B~0.01) or K (r_B~0.1); K channels thus offer better power on γ measurement

> D⁰ can decay to $K_s\pi\pi$, K_sKK (GGSZ mode); Model independent

 $r_B = 0.07 \pm 0.04$ $\gamma = (44^{+43}_{-38})^\circ$ $\delta_B = (137^{+35}_{-46})^\circ$ I.B LHCb LHCb δ_B (degrees) 300 0.2 0.15 200 0.1 100 0.05 100 200 300 100 200 300 0 0 y (degrees) y (degrees)

> r_B lower than world average (but consistent) → larger error on γ
 > After 2018, GGSZ mode alone can reach a sensitivity of 9°

LHCb-CONF-2012-030

> h is π (r_B~0.01) or K (r_B~0.1); K channels thus offer better power on γ measurement

> D⁰ can decay to $K\pi\pi\pi$, $KK\pi\pi$, $\pi\pi\pi\pi$, $K_s\omega$, $K_sK\pi$ etc.

> Offer constrain to r_B : $r_B^K = 0.097 \pm 0.011$

Statistic uncertainty limited, errors can be scaled with increased luminosity

γ Studies with $B^+{\rightarrow}D^0h^+\pi\pi$

> h is π or K; K channels offer better power on γ measurement

> D⁰ can decay to KK, $\pi\pi$ (GLW modes), K_s $\pi\pi$, K_sKK (GGSZ mode)

γ Studies with other B mesons (1)

> Two neutral B mesons: B^0 , B_s ; Flavor specified decay or decay to CP eigenstates

> Flavor specified decay: $B_s \rightarrow D_s K$ etc.

> $\gamma + \phi_s (2\beta)$ can be accessed through mixing of neutral B mesons, i.e. $B_s \rightarrow D_s K (r_B \sim 0.3), B^0 \rightarrow D^0 \pi (r_B \sim 0.02)$ etc.

$$\frac{d\Gamma_{B_s \to f}(t)}{e^{-\Gamma_s t}} \propto \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - D_f \sinh\left(\frac{\Delta\Gamma_s}{2}\right)\right] + C\cos(\Delta m_s t) - S_f \sin(\Delta m_s t)\right]$$

$$\frac{d\Gamma_{\overline{B}_s \to f}(t)}{e^{-\Gamma_s t}} \propto \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - D_f \sinh\left(\frac{\Delta\Gamma_s}{2}\right)\right] - C\cos(\Delta m_s t) + S_f \sin(\Delta m_s t)\right]$$

$$Change sign for f$$

$$D_f = \frac{2r_{D_s K} \cos(\Delta(-(\gamma - 2\beta_s)))}{1 + r_{D_s K}^2} \qquad C = \frac{1 - r_{D_s K}^2}{1 + r_{D_s K}^2} \qquad S_f = \frac{2r_{D_s K} \sin(\Delta(-(\gamma - 2\beta_s)))}{1 + r_{D_s K}^2}$$

$$D_f \text{ can be measured due}$$

$$Tagging info, required$$

88

Independent of tagging

γ Studies with other B mesons (2)

LHCb-CONF-2012-029

> Event Yields (with D_s decays to KK π , K $\pi\pi$ and $\pi\pi\pi$)

> Systematic uncertainties dominated by fixed parameters (Δm_s , Γ_s , $\Delta \Gamma_s$), flavor tagging calibration, background description

> γ error expected to be ~9° at 2018; Similar analysis for B_s \rightarrow D_sK $\pi\pi$

γ Studies with other B mesons (3)

LHCb-CONF-2012-024

> Flavor specified decay: $B^0 \rightarrow D^0 K \pi(K^*)$; Direct extension of $B \rightarrow D^0 K$; Dalitz analysis possible

> Decay to CP eigenstates: $B^0 \rightarrow D^0(KK, \pi\pi)KK(\rho^0)$, ~900/fb signals; $B_s^0 \rightarrow D^0(KK, \pi\pi)KK(\phi) \sim 160/fb$ signals; Time dependent Dalitz analysis

 $> B_c^+ \rightarrow D^+ D^0$, $B_c^+ \rightarrow D_s^+ D^0$: Observations with 2018 data

Large r_B

> Similar channels in b baryon, like $\Lambda_b \rightarrow D\Lambda$ etc.

γ Combination with LHCb data (1)

y Combination with LHCb data (2)

> With 2018 dataset, γ error ~ 2° level (reduced by a factor of 4 + additional channels) as main systematic uncertainties is either not dominant or to be reduced by better treatment

Monday, February 18, 13

y Using Loop-mediated Charmless B decays (1)

> Instead of γ from interference between tree-level diagrams, γ could also be obtained from a tree-level b→u transition + loop level b→c transition

> New physics can enter in penguin diagram; Comparing with γ from tree level only will indicate the contribution from new physics

> Benefit from combined Isospin analysis of $B^0 \rightarrow \pi^+ \pi^-$, $\pi^0 \pi^0$ and $B^+ \rightarrow \pi^+ \pi^0$ and U-spin symmetry process $B_s \rightarrow KK$

> Inputs of combinations: branching fractions, direct and mixing-induced CP violation (time-dependent analysis needed)

y Using Loop-mediated Charmless B decays (2)

> Branching fraction: 0.37 fb⁻¹ data

JHEP 10(2012) 037, arXiv:1202.2794

$$\begin{aligned} \mathcal{B} \left(B^0 \to \pi^+ \pi^- \right) &= (5.08 \pm 0.17 \pm 0.37) \times 10^{-6}, \\ \mathcal{B} \left(B_s^0 \to K^+ K^- \right) &= (23.0 \pm 0.7 \pm 2.3) \times 10^{-6}, \\ \mathcal{B} \left(B_s^0 \to \pi^+ K^- \right) &= (5.4 \pm 0.4 \pm 0.6) \times 10^{-6}, \\ \mathcal{B} (B^0 \to K^+ K^-) &= (0.11 \substack{+0.05 \\ -0.04} \pm 0.06) \times 10^{-6}, \\ \mathcal{B} (B_s^0 \to \pi^+ \pi^-) &= (0.95 \substack{+0.21 \\ -0.17} \pm 0.13) \times 10^{-6}. \end{aligned}$$

> CPV measurements by time-dependent analysis with 0.69 fb⁻¹ data with fixed values on Δm_d , Δm_s and sign of Γ_s (from LHCb)

$$A_{CP}(\dagger) = \frac{\Gamma(B_{(s)}^{0}(\dagger=0) \rightarrow f) - \Gamma(\overline{B}_{(s)}^{0}(\dagger=0) \rightarrow f)}{\Gamma(B_{(s)}^{0}(\dagger=0) \rightarrow f) + \Gamma(\overline{B}_{(s)}^{0}(\dagger=0) \rightarrow f)} = \frac{A_{f}^{dir} \cos(\Delta m_{(s)} \dagger) + A_{f}^{mix} \cos(\Delta m_{(s)} \dagger)}{\cosh(\Delta \Gamma_{(s)} \dagger) - A_{f}^{\Delta \Gamma} \sinh(\Delta \Gamma_{(s)} \dagger)}$$

y Using Loop-mediated Charmless B decays (3)

> Combining current LHCb measurements + B factories (before middle 2012), a precision of ~10° on γ can be achieved

y Using Loop-mediated Charmless B decays (4)

> Analysis also performed with flavour-specific 2(3)-body final states

$$\mathbf{A}_{CP} = \frac{\Gamma(\mathbf{B}_{(s)}^{\mathbf{0}} \rightarrow \mathbf{f}) - \Gamma(\overline{\mathbf{B}}_{(s)}^{\mathbf{0}} \rightarrow \overline{\mathbf{f}})}{\Gamma(\mathbf{B}_{(s)}^{\mathbf{0}} \rightarrow \mathbf{f}) + \Gamma(\overline{\mathbf{B}}_{(s)}^{\mathbf{0}} \rightarrow \overline{\mathbf{f}})}$$

> Using 0.35 fb⁻¹ data: Phys. Rev. Lett. 108 (2012), arXiv:1202.6251 $A_{CP} = (-0.088 \pm 0.011 \pm 0.008)$ > 60 $B^0 \rightarrow K^+ \pi^ A_{CP} = (0.27 \pm 0.08 \pm 0.02)$ $B_s \rightarrow K^- \pi^+$ 3.2σ , first evidence > Using 1 fb⁻¹ data: LHCb-CONF-2012-028, LHCb-CONF-2012-018 $A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = 0.034 \pm 0.009 \pm 0.004 \pm 0.007$ $B^+ \rightarrow K^+ \pi^- \pi^+$ **Interesting CP** $A_{CP}(K^{\pm}K^{+}K^{-}) = -0.046 \pm 0.009 \pm 0.005 \pm 0.007$ $B^+ \rightarrow K^+ K^- K^+$ structure over **Dalitz plot** $A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}) = 0.120 \pm 0.020 \pm 0.019 \pm 0.007$ $B^+ \rightarrow \pi^+ \pi^- \pi^+$ $A_{CP}(K^{+}K^{-}\pi^{\pm}) = -0.153 \pm 0.046 \pm 0.019 \pm 0.007$ $B^+ \rightarrow K^+ K^- \pi^+$

> SU(3) symmetry analysis can be performed to probe new physics underline

Conclusion: y After 2018

