LHCb Upgrade Physics Case

Introduction

- LHCb Physics program for the upgrade: precision tests of the Standard Model and search for New Physics in the Flavour Sector.
- First LHCb data have demonstrated that a dedicated detector at an hadron collider can have a major impact on New Physics searches (See talks of yesterday and today).
- This can be significantly improved by the upgrade of the detector.

Principles

- Exploit two features of flavour physics in the Standard Model:
 - No Tree Level Flavor Changing Neutral Current
 - Quark mixing described by CKM matrix with a single source of CP violation
- Deviations from these via heavy (virtual) particles in loop corrections could be a sign of ~TeV massive particles.
- Complementary to direct searches of new heavy particles by ATLAS and CMS.
- Upgrade:
 - Improvement of the precision of the existing measurements down to theory uncertainties
 - New ideas, new modes to increase the physics reach potential

Classes of observables

- Large set of observables sensitive to New Physics are obtained from the study of:
 - Rare decays, in flavour changing neutral currents, with branching fractions small in the Standard Model and where new heavy particles could enhanced notable these fractions
 - CP violation in B meson decays, where strong experimental and theory constraints provide a solid framework in the Standard Model to compare with.
 - CP violation and mixing in charm.
- Numbers of other analyses where LHCb data collected in the forward region can help significantly.

Upgrade conditions

- In the following, sensitivities of the upgraded LHCb detector will be shown, based on:
 - « Implication of LHCb measurements and future prospects », arXiv:
 1208.3355
- Assuming (conservatively):
 - The detector performances will be equal to the current ones except the trigger efficiencies which will be twice the current ones for hadrons, photons and electrons (unchanged for muons)
 - D and B production cross-sections will double at 14 TeV compared to 7
 TeV.
 - Instantaneous luminosity in LHCb will be 10^{33} cm⁻².s⁻¹ with 25ns bunch crossings (μ =2).
 - 50 fb⁻¹ of data will be collected in 10 years.
- Statistical uncertainties only

$B^0 \rightarrow K^{*0} \mu \mu$

- Semi-leptonic decays are a rich laboratory for new physics contribution searches.
- Study of Flavor Changing Neutral Currents to access Wilson coefficients that can be affected by New Physics Contributions.
- Angular analysis of the decays $B^0 \to K^{*0} \mu \mu$ or $B_s^0 \to \phi \mu \mu$ to access $C^{(')}_{7}$, $C^{(')}_{9}$ and $C^{(')}_{10}$.

$$\frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \hat{\phi} \, \mathrm{d} q^2} = \frac{9}{16\pi} \left[\underbrace{F_L} \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K)^{-1} + \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) + \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) + \frac{3}{4} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} + \frac{4}{3} \underbrace{A_{FB}} (1 - \cos^2 \theta_K) \cos \theta_\ell + \frac{4}{3} \underbrace{A_{FB}} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\hat{\phi} \right]$$

$B^0 \rightarrow K^{*0} \mu \mu$

	Current precision	LHCb in 2018	Upgrade	Theory
$S_3(1 < q^2 < 6$ GeV ²)	0.08	0.025	0.008	0.02
A _{FB} crossing point	25%	6%	2%	7%

• Isospin asymmetries between B⁺ \rightarrow K⁺ $\mu^+\mu^-$ and B⁰ \rightarrow K_s⁰ μ^+ μ^- (challenging because of the K_s⁰ reconstruction):

	Current precision	LHCb in 2018	Upgrade	Theory
A _{isospin}	0.25	0.08	0.025	0.02

• Mesurement of the suppressed B⁺ \rightarrow π^+ μ^+ μ^-

B(B→πμμ)/	25%	8%	2.5%	10%
(Β→Κμμ)				

$$B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$$

 Test possible new particles in loops comparing with precise SM predictions.

• Comparison of $B^0 \to \mu\mu$ to $B_s^0 \to \mu\mu$ allows to probe Minimal Flavour Violation.

$$B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$$

	Current precision	LHCb in 2018	Upgrade	Theory
B _s →μμ	1.5x10 ⁻⁹	0.5x10 ⁻⁹	0.15x10 ⁻⁹	0.3x10 ⁻⁹
B _d →μμ/ B _s →μμ		~100%	~35%	~5%

$$B_s \rightarrow \phi \gamma$$

- CP asymetries in B \rightarrow K* γ can bring important constraints but is extremely difficult to measure at an hadronic collider (tagging + reconstruction of K* *0 \rightarrow K $_{s}$ 0 π^{0})
- However, the same measurement in $B_s \to \phi \gamma$ is reachable by LHCb.
- Other interesting ideas using $\Lambda_b \rightarrow \Lambda \gamma$ or $B \rightarrow \phi K \gamma$.

	Current precision	LHCb in 2018	Upgrade	Theory
$2\beta_s^{\text{eff}}(B_s^0)$ $\rightarrow \phi \gamma)$		0.09	0.02	<0.01
$\tau^{\text{eff}}(B_s^0 \rightarrow \phi \gamma)/\tau(B_s^0)$		5%	1%	0.2%

CP violation

- CP violation in the Standard Model is fully described by CKM mechanism.
- Other sources of CP violation could come from New Physics.
- Large CP violation effect in B decays in the Standard Model, at tree level.
 Corrections in loops could modify it.
- Experimental and theoretical knowledge of the CKM parameters in the Standard Model are best summarized in Unitarity Triangle fits. Consistency within the Standard Model tested to O(10%).

ϕ_s with $B_s^0 \rightarrow J/\psi \pi$

Mixing phase can be modified if presence of heavy particles in

the box diagrams

	Current precision	LHCb in 2018	Upgrade	Theory
$2\beta_s(B_s^0 \rightarrow J/\psi \phi)$	0.1	0.025	0.008	0.003
$2\beta_s(B_s^0 \rightarrow J/\psi f_0)$	0.17	0.045	0.014	0.01

β

- Precise measurements of β_s but also β will be obtained.
- With this level of precision, penguin contaminations in these measurements cannot be ignored, and can be controlled from other measurements.

	Current precision	LHCb in 2018	Upgrade	Theory
β	0.8°	0.6°	0.2°	Negligible
$2\beta_s^{\text{eff}}(B_s^0)$ $\rightarrow \phi \phi$)		0.17	0.03	0.02
$2\beta_s^{\text{eff}}(B_s^0)$ $\rightarrow K^{*0}K^{*0})$		0.13	0.02	<0.02
$2\beta^{\text{eff}}(B^0 \rightarrow \phi K_s^0)$	0.17	0.30	0.05	0.02

γ angle

- The least well know angle of the UT, with an uncertainty of 10° on the combined experimental measurements.
- Also the only angle which can be measured with tree only processes, through:
 - Asymmetries in B \rightarrow D^(*)K^(*) decays,
 - Taged time-dependent analysis of $B_s^0 \rightarrow D_s K$
- Provide a reference measurement of γ in the Standard Model that can be compared to measurements where loop diagrams contribute: charmless 2 or 3 body decays.

γ angle

	Current precision	LHCb in 2018	Upgrade	Theory
$\gamma(B \rightarrow D^{(*)}K^{(*)})$	10 °	4°	0.9°	Negligible
$\gamma(B_s^0 \rightarrow D_s K)$		11 °	2°	Negligible

CP violation in D

- The charm sector also provides interesting oportunities to test the Standard Model, in particular in studying CP violation and mixing. Complementary constraints with respect to B sector (up quarks <-> down quarks)
- Huge statistics: requires precise control of systematic uncertainties

	Current precision	LHCb in 2018	Upgrade	Theory
АΓ	2.3x10 ⁻³	0.4x10 ⁻³	0.07x10 ⁻³	-
ΔA_CP	2.1x10 ⁻³	0.65x10 ⁻³	0.12x10 ⁻³	-

Spectroscopy

- LHCb can also contribute significantly in other fields.
- For example, study of the exotic quarkonium-like states, using the huge dimuon available sample.
- Charmonium-like sector currently under detailed investigation, bottomonium counter part could be studied also in the upgrade, thanks to the good Y(nS)→μμ reconstruction performances.

B_{c}

- Unique meson: formed with two different heavy flavours. Nice laboratory where precision of mass and lifetimes could help reducing uncertainties in QCD parameters affecting B physics predictions.
- Most of its properties still not known with precision, because of its low production rate.
- New decay modes discovered with LHCb data and first measurement of mass.
- Large B_c samples could allow also exploring CP violation in original places $(B_c^+ \rightarrow D_{(s)}^+ D^0)$ or exotic states in $B_c^+ \pi(\pi)$ spectra

Forward and exclusive physics

Precise measurement of W⁺/W⁻
production asymmetry can give
strong constraints on Parton Density
Functions for better knowledge of
them

- Central exclusive production (J/ ψ , heavy quarkonium, ...) via photon and pomeron exchanges.
- Clean environment for the study of quarkonium or exotic states.

How to reach these goals

- The DAQ of the current detector is limited to 1
 MHz readout rate by design.
- Rate reduction to 1 MHz is obtained with a hardware trigger looking for high p_T objects (muons, hadrons, électrons, photons)
- This 1MHz constraint limit the efficiency of hadronic channels at higher luminosity.

Trigger for the upgrade

- Replace the readout electronics to read the full detector information at 40MHz!
- Trigger hardware (LLT, Low Level Trigger) will adjust the readout rate but will progressively be removed:
 - Higher efficiencies on hadronic channels
 - Full software trigger which allows maximum flexibility: data analyses are not limited and trigger software can be modified to explore particular interesting decay modes.

Detector modifications: 40 MHz readout and improvements for higher luminosity

Conclusions

- LHCb proven capabilities of studying B and D physics at the LHC can be extended to obtain precision flavour physics measurements comparable to theory uncertainties.
- → LHCb Upgrade, based on full software trigger reading out the detector information at 40 MHz: exciting challenge, crucial to reach the necessary flexibility and performances.