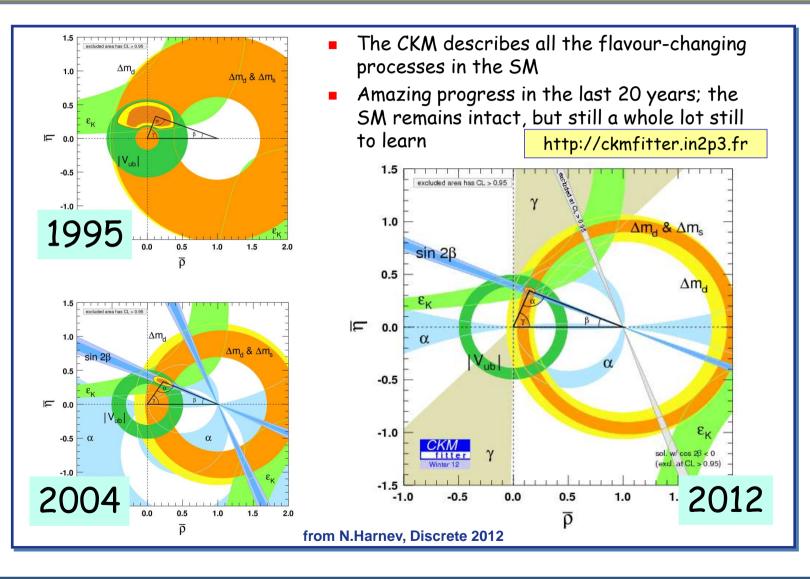
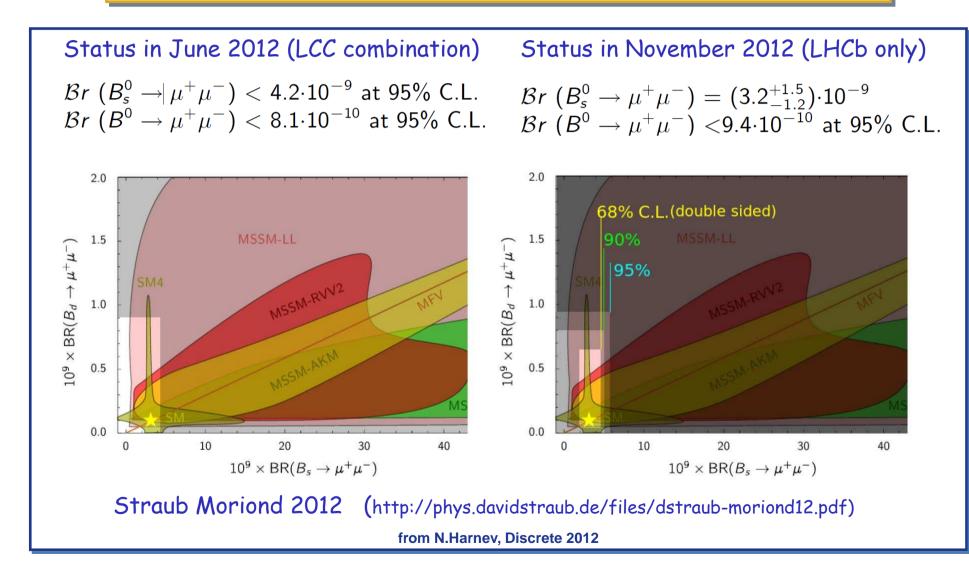
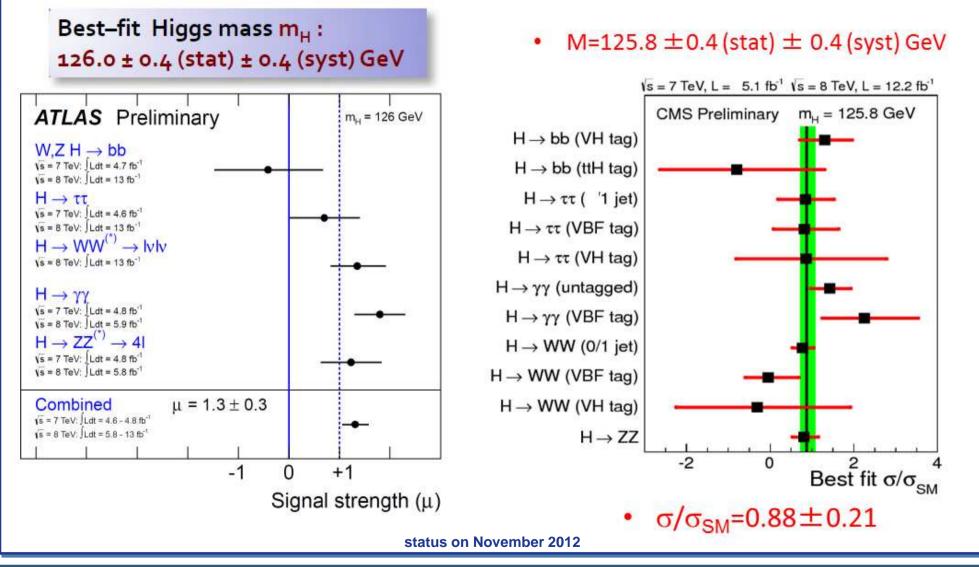
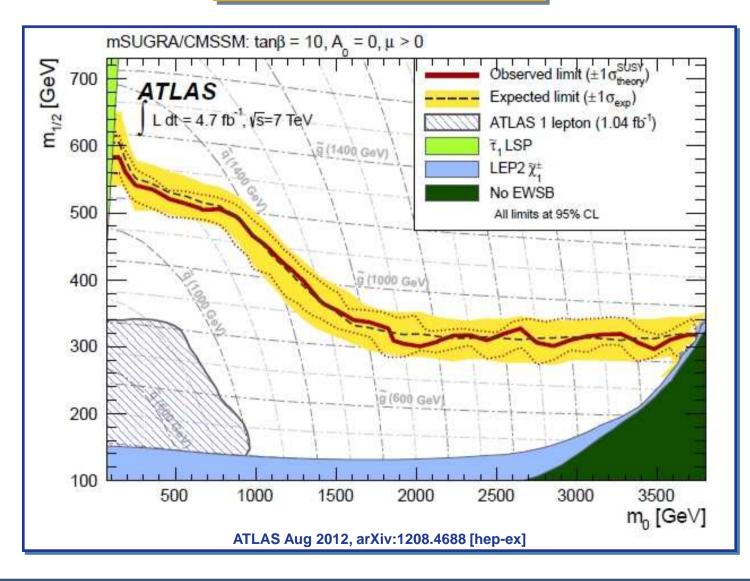
The physics of the new facilities **Super Flavour Factories**


Alberto Lusiani INFN and Scuola Normale Superiore Pisa

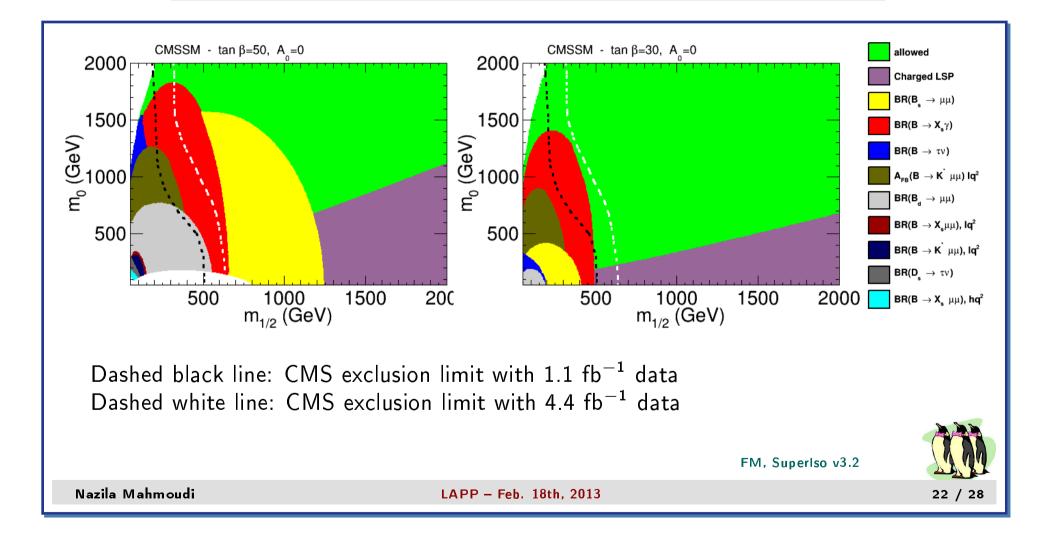

9th Franco-Italian Meeting on B Physics Flavour Physics in the light of the recent results at LHC

18-19 February 2013, LAPP


B-factories and now LHCb confirm SM on CPV and flavour physics


LHCb $B_{s,d} \rightarrow \mu^+ \mu^-$ confirms SM and rules out large areas of NP

LHC Higgs measurements confirm the SM


"Light" CMSSM ruled out

Today LHC confirms the SM and does not indicate where to look for NP

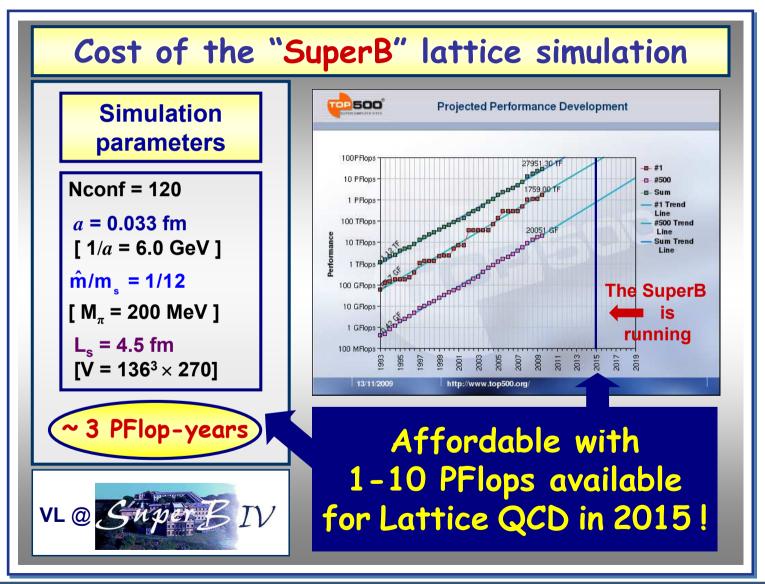
- Iarge amount of stringent bounds on many possible NP models
- future NP signals will probably be small, to comply with present bounds
- need larger energies and / or quite larger intensities
 - combination of diverse experimental results can help
 - improve the statistical evidence for NP
 - discriminate between different NP models
- different facilities increase the variety of the experimental probes
 - ▶ here: contribution from e^+e^- high intensity (Super) Flavour Factories

Flavour Physics can provide very effective bounds on NP

NP signals in heavy hadrons & leptons at the intensity frontier

heavy hadrons

- NP can compete/interfere with SM amplitudes in forbidden / suppressed / mixing&CPV processes
- CPV in B mesons ideal because CKM matrix makes it maximal and relatively well calculable
- ▶ in SM, *D* mixing and CPV are smaller and less precisely predicted
- in several cases matching progress in lattice QCD is required
- ► facilities:
 - LHCb, asymmetric e^+e^- B-factories: BABAR/Belle \rightarrow SuperB-/BelleII
 - e⁺e⁻ factories around the c-tau threshold also useful but no B mesons


(charged) heavy leptons

- (charged) Lepton Flavour Violation
 - clean, mostly QCD-free SM prediction, unambigous NP signal detection
 - NP effects less direct than for hadrons (typically, unknown mass-scale heavy neutrino sector)
 - possibly related to neutrino mixing, esp. θ_{13}
- best facilities: e^+e^- Super-Flavour-Factories (both around the $\Upsilon(4S)$ and tau-charm threshold)
 - beam polarization would increase the experimental reach

Super Flavour Factories

- two main directions
 - asymmetric e^+e^- *B*-factories around the $\Upsilon(4S)$
 - Bellell, SuperB-
 - compete with and complement LHCb on *B* physics
 - charm physics, tau physics including LFV
 - clean environment facilitates many precision measurements and NP searches
 - beam polarization would provide additional benefits for tau and EW physics
 - $e^+e^- c \tau$ factories above and close to charm and tau thresholds
 - BESIII, Novosibirsk c-tau proposal, Italian Super c-tau (hypothesis to recover SuperB funds)
 - precision measurements on charm mesons and tau leptons (also tau LFV)
 - asymmetric energies allow a wider range of time-dependent measurements
- ♦ both factories complementary and competitive to other planned or operating high intensity facilities (like MEG, Mu2e, g−2, kaon precision experiments, etc.)

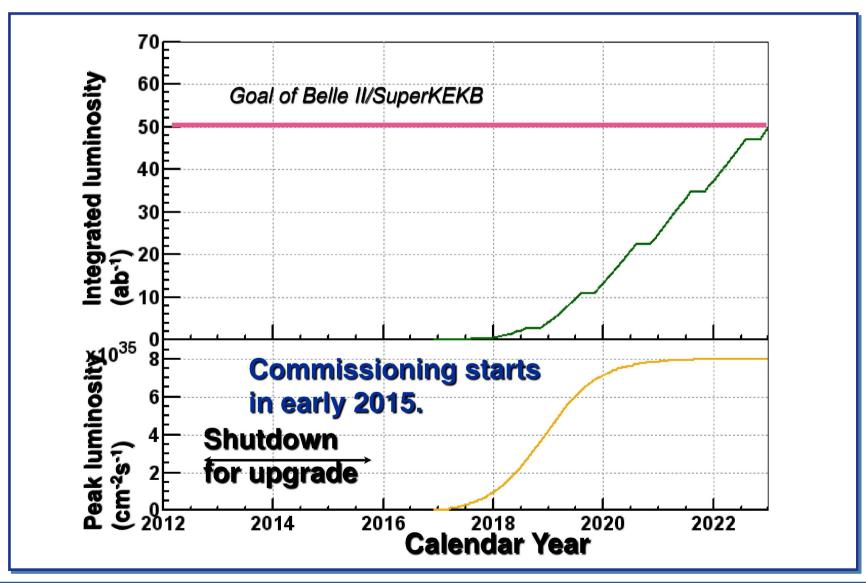
digression: Lattice QCD progress, V.Lubicz, Arcetri, Feb 2010, 1

digression: Lattice QCD progress, V.Lubicz, Arcetri, Feb 2010, 2

V.Lubicz @ Villa Mondragone Monte Porzio Catone - Italy 13 - 15 November 2006				
Hadronic	Current latt.	6 TFlop	60 TFlop	1-10 PFlop
matrix	error	Year	Year	Year
element	(2006)	[2009]	[2011 LHCb]	[2015 SuperB]
$f_{+}^{K\pi}(0)$	0.9%	0.7%	0.4%	< 0.1%
	$(22\% \text{ on } 1-f_+)$	<u>(17% on 1-f₊)</u>	(10% on 1-f ₊)	(2.4% on 1-f ₊)
В _к	11%	5%	3%	1%
f _B	14%	3. 5 - 4.5%	2.5 - 4.0%	1 – 1.5%
$f_{Bs}B_{Bs}^{1/2}$	13%	4 - 5%	3 - 4%	1 – 1.5%
ξ	5%	3%	1.5 - 2 %	0.5 – 0.8 %
<u>ح</u>	(26% on ξ-1)	<u>(18% on ξ-1)</u>	<u>(9-12% on ξ-1)</u>	(3-4% on ξ-1)
$\mathcal{F}_{B \to D/D^* lv}$	4%	2%	1.2%	0.5%
	$(40\% \text{ on } 1-\mathcal{F})$	$(21\% \text{ on } 1-\mathcal{F})$	$(13\% \text{ on } 1-\mathcal{F})$	(5% on 1- <i>F</i>)
$f_{+}^{B\pi},$	11%	5 .5 - 6.5%	4 - 5%	2 – 3%
$T_1^{B \rightarrow K * / \rho}$	13%			3-4%

digression: Lattice QCD progress, V.Lubicz, Arcetri, Feb 2010, 3

THE 2009 STATUS REPORT							
Hadronic matrix element	Lattice error in 2006	Lattice error in 2009	6 TFlop Year [2009]	60 TFlop Year [2011 LHCb]	1-10 PFlop Year [2015 SuperB]		
$f_{+}^{K\pi}(0)$	0.9%	0.5%	0.7%	0.4%	< 0.1%		
B _K	11%	5%	5%	3%	1%		
f _B	14%	5%	<mark>3.5</mark> - 4.5%	2.5 - 4.0%	1 – 1.5%		
$f_{\rm Bs}B_{\rm Bs}^{1/2}$	13%	5%	4 - 5%	3 - 4%	1 – 1.5%		
بخ	5%	2%	3%	1.5 - 2 %	0.5 - 0.8 %		
$\mathcal{F}_{\mathrm{B} \to \mathrm{D/D*lv}}$	4%	2%	2%	1.2%	0.5%		
$f_{+}^{B\pi},\ldots$	11%	11%	<mark>5.5</mark> - 6.5%	4 - 5%	2-3%		
$T_1^{B \rightarrow K^*/\rho}$	13%	13%			3-4%		
The exp	The expected accuracy has been reached! (except for Vub)						


Super B-factories

- SuperB has been recently canceled
- Bellell on the other hand appears to be well on track
- Bellell experimental reach is equivalent to SuperB, with the following exceptions:
 - beam polarization
 - ability to run at the charm threshold
- other differences
 - Bellell design luminosity 80% of SuperB
 - BelleII was scheduled to begin earlier than SuperB
- studies done for SuperB here reported can be expected to approximately hold for Bellell as well

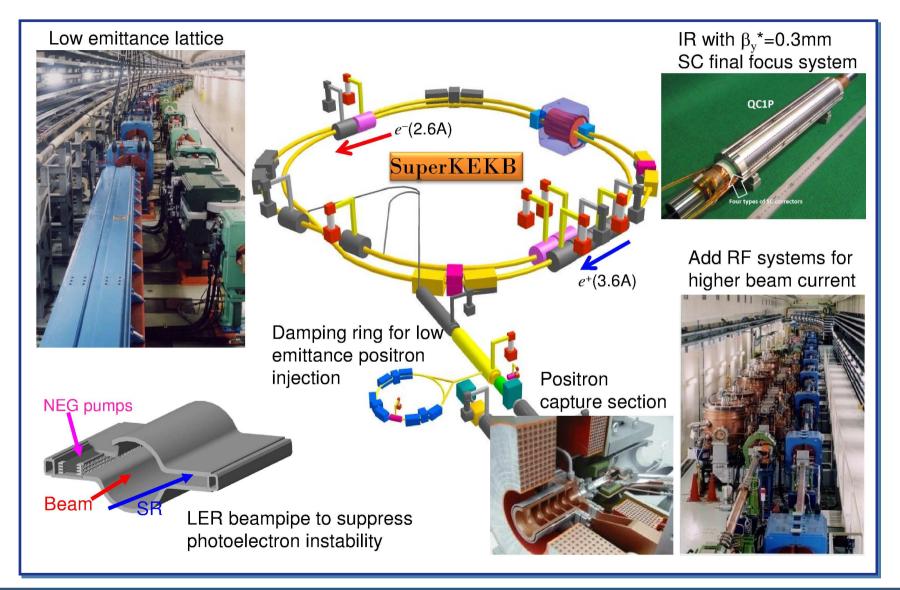
Main features of Bellell

- Υ (4*S*)-peak asymmetric energy e^+e^- , design luminosity $\approx 0.8 \cdot 10^{36} \text{ cm}^{-2} \text{s}^{-1}$
- goal to collect 50 ab^{-1} of data starting from 2016 over 5 years
- standard general purpose detector similar to Belle and BABAR
 - improvements mainly on speed, computing power, mass storage
- ◆ real challenge: increase storage ring luminosity by ~100× with a limited increase of electrical power


Bellell luminosity projection – M.Yamauchi, Dec 2012

A. Lusiani (INFN & SNS, Pisa)

Future Super Flavour Factories


Bellell collaboration – M.Yamauchi, Dec 2012

A. Lusiani (INFN & SNS, Pisa)

Future Super Flavour Factories

SuperKEKB upgrade – M.Yamauchi, Dec 2012

SuperKEKB Machine parameters – M.Yamauchi, Dec 2012

8 1 5.9 m 24	LER (e ⁺) 16.3 22 5.9 18	7	LER (<i>e</i> ⁺) 16.3 4 33 3.2 0.27 3.2 0.40	
8 1 5.9 m 24	3.5 22 5.9 18	7 2.5 0.30 5.3	4 33 3.2 0.27 3.2	
i : 5.9 m 24	22 5.9 18	2.5 0.30 5.3	33 3.2 0.27 3.2	
5.9 m 24	5.9 18	2.5 0.30 5.3	3.2 0.27 3.2	
m 24	18	0.30 5.3	0.27 3.2	
m 24	18	5.3	3.2	
_		0.35	0.40	
	0			
6	6	5	6	High
1190	1640	2620	3600	beam currer
m		7.75	10.2	
m <u>940</u>	940	59	59	Nanobeam
		0.0028	0.0028	
0.090	0.129	0.0875	0.09	
s ⁻¹ 2 x	1034	8 x	10 ³⁵	
		s ⁻¹ 2 x 10 ³⁴	0.090 0.129 0.0875 s ⁻¹ 2 x 10 ³⁴ 8 x	0.090 0.129 0.0875 0.09

Future Super Flavour Factories

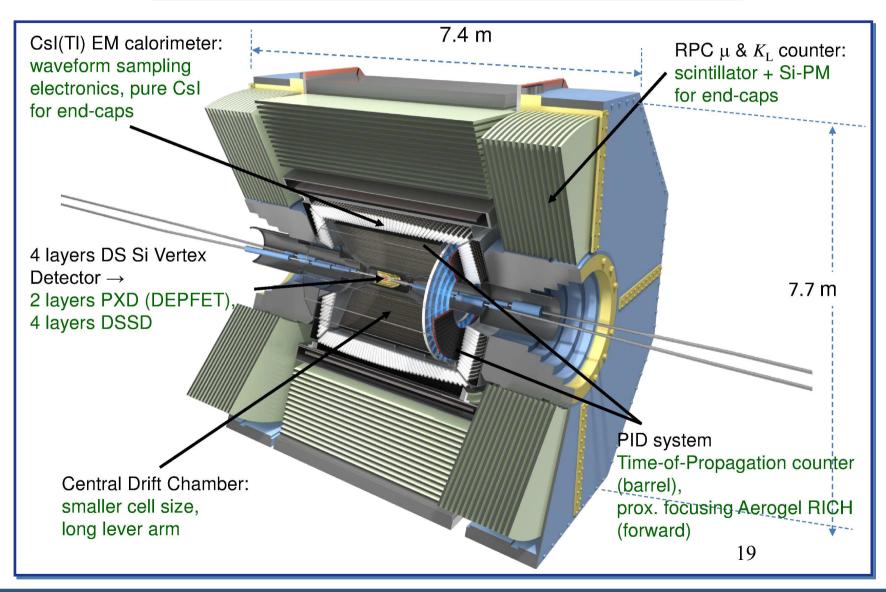
Beam pipe production at BINP – M.Yamauchi, Dec 2012

Future Super Flavour Factories

Installation of the new bending magnet – M.Yamauchi, Dec 2012

A. Lusiani (INFN & SNS, Pisa)

Future Super Flavour Factories


Positron Damping Ring – M.Yamauchi, Dec 2012

A. Lusiani (INFN & SNS, Pisa)

Future Super Flavour Factories

Belle II Detector Upgrade – M.Yamauchi, Dec 2012

Super *B*-factories physics studies produced several documents

Super*B*

- 2005 Hewett et al., The Discovery Potential of a Super B factory, hep-ph/0503261
- 2007 Conceptual Design Report, arXiv:0709.0451 [hep-ex]
- 2008 Valencia retreat proceedings, arXiv:0810.1312 [hep-ex]
- 2010 SuperB white paper: Physics, arXiv:1008.1541 [hep-ex]
- 2011 The impact of SuperB on flavour physics, arXiv:1109.5028v2 [hep-ex]

Bellell

2010 Physics at Super B Factory, arXiv:1002.5012 [hep-ex]

SuperB golden modes that also hold for Bellell

(indirect searches for NP need 1) good exp. precision & 2) good theory understanding)

B_{u,d} Physics

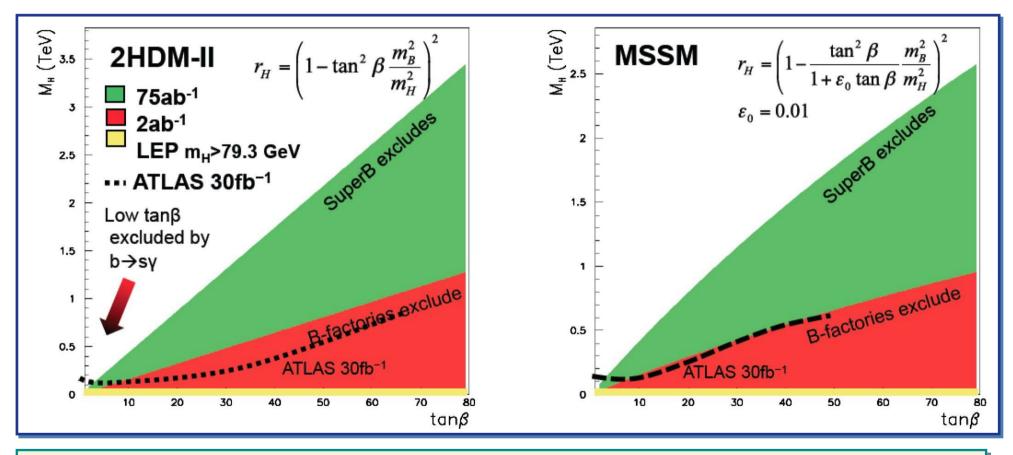
- $\blacklozenge B^+ \to \tau^+ \nu, \quad B^+ \to \mu^+ \nu, \quad B^+ \to K^{(*)+} \nu \overline{\nu}, \quad b \to s \gamma, \quad b \to s \ell \ell$
- precision sin 2β measurements in $b \rightarrow s$ penguins

τ Physics

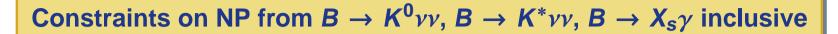
• Lepton flavour violation in tau decays: especially $\tau \to \mu \gamma$ and $\tau \to 3\ell$

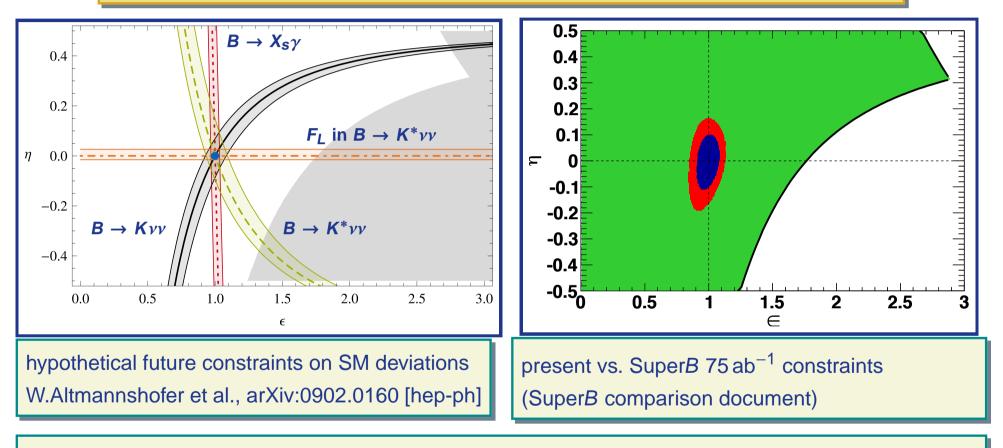
Charm Physics

• D^0 mixing parameters and *CP* violation (limited theory precision)


Other Physics

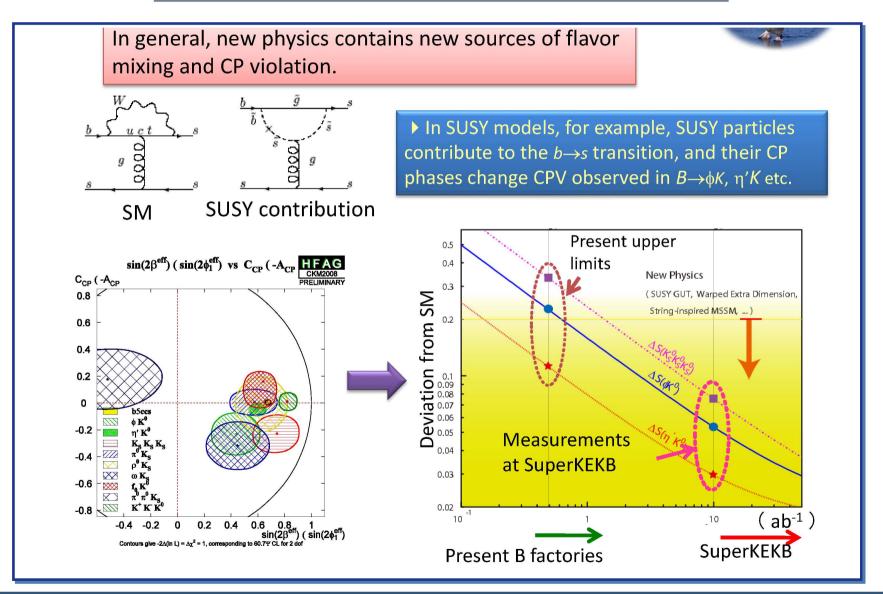
Direct searches for non-standard light Higgs bosons, Dark Matter and Dark Forces


$$\mathcal{B}(\mathbf{B} \to \tau \mathbf{v})$$


- helicity suppressed, reasonably clean SM prediction
 - within SM, rate proportional to $|V_{ub}|^2$ and f_B^2
- NP charged Higgs interferes negatively, reducing $\mathcal{B}(B \to \tau \nu)$
 - ▶ NP effect is larger in $\mathcal{B}(B \to \tau \nu)$ vs. $\mathcal{B}(B \to \mu \nu)$
- non trivial selection and bkg suppression because of neutrinos in final state
- SuperB offers ideal conditions
 - clean events, hermetic detector, well defined initial state, just 2 Bs
 - tag other side with reconstructed B
 - study "extra-energy" distribution with data for bkg subtraction
- 3% measurement of SM prediction possible

$\mathcal{B}(B \rightarrow \tau \nu)$ constrains NP charged Higgs parameters

r_H = 𝔅(𝔅 → τν)/𝔅_{SM}(𝔅 → τν) exclusion plots assume measurement = SM prediction
 ATLAS exclusion limit for 30 fb⁻¹ at 14 TeV computed using arXiv:0901.0512

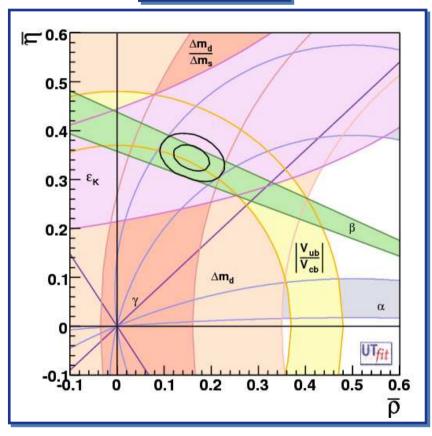


W.Altmannshofer et al., arXiv:0902.0160 [hep-ph]: combining 4 observables provides good test of modified *Z*-penguin contributions, non-MFV interactions, RH currents, ...


A. Lusiani (INFN & SNS, Pisa)

Future Super Flavour Factories

CPV in $b \rightarrow s$ **penguins** - **M.**Yamauchi, Dec 2012


T-dependent CPV to search for L-R symmetric NP – M.Danilov, ICHEP 2012

Expected sensitivity for UT parameters at 50 fb⁻¹ – M.Danilov, ICHEP 2012

Observable	Belle 2006 SuperKEK		KEKB	†L	HCb
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})	(2 fb^{-1})	(10 fb ⁻¹)
Unitarity triangle parameters					
$\sin 2\phi_1$	0.026	0.016	0.012	~ 0.02	~ 0.01
$\phi_2 (\pi \pi)$	11°	10°	3°	-	-
$\phi_2 \ (\rho \pi)$	$68^{\circ} < \phi_2 < 95^{\circ}$	3°	1.5°	10°	4.5°
$\phi_2 \ (\rho \rho)$	$62^{\circ} < \phi_2 < 107^{\circ}$	3°	1.5°	-	-
$\phi_2 \text{ (combined)}$		2°	$\lesssim 1^{\circ}$	10°	4.5°
ϕ_3 ($D^{(*)}K^{(*)}$) (Dalitz mod. ind.)	20°	7ª	2°	8°	
$\phi_3 (DK^{(*)})$ (ADS+GLW)	-	16°	5°	$5-15^{\circ}$	
$\phi_3 \ (D^{(*)}\pi)$	(14) (14)	18°	6°		
$\phi_3 \text{ (combined)}$		6°	1.5°	4.2°	2.4°
$ V_{ub} $ (inclusive)	6%	5%	3%	-	-
$ V_{ub} $ (exclusive)	15%	12% (LQCD)	5% (LQCD)	5	
$^{\dagger\dagger\dagger}\bar{ ho}$	20.0%		3.4%		
$^{\dagger\dagger\dagger}ar\eta$	15.7%		1.7%		
JT parameters	Ξ Υ	xm _d ym _a 2β+γ	C		oresent alues but o ⁻¹ errors
0	0.1 Δm	β d			es can lead ency of UT.

From ~10% to ~1% experimental precision on CKM

CKM fit in 2006

bands show 95% constraints, 2006 values assumed for the SuperB fit

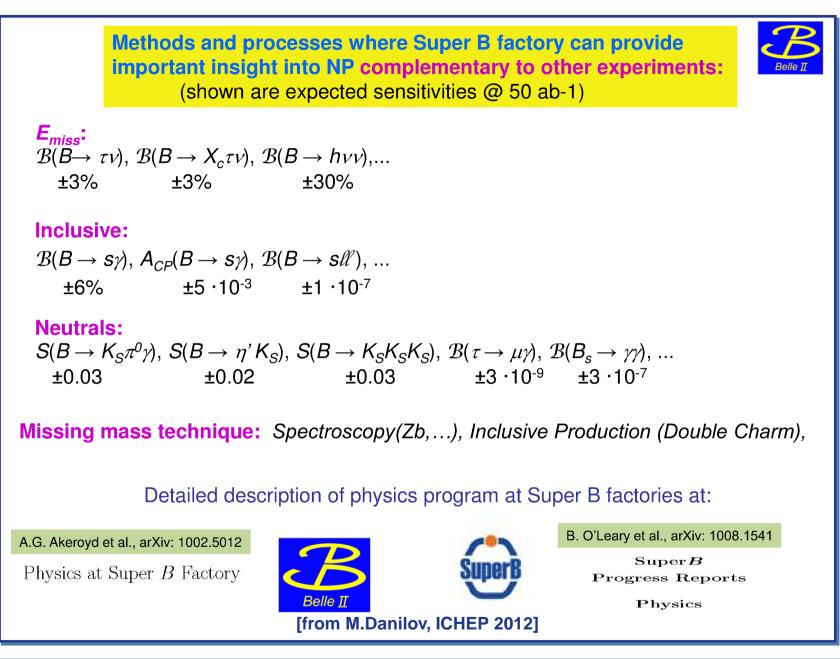
SuperB Y(4S) B Physics reach, 1

Observable	<i>B</i> Factories (2 ab^{-1})	Super <i>B</i> (75 ab ⁻¹)	١ſ
sin(2β) (J/ψ K ⁰)	0.018	0.005 (†)	
$\cos(2\beta) (J/\psi K^{*0})$	0.30	0.05	
$sin(2\beta)$ (Dh^0)	0.10	0.02	
$\cos(2\beta)$ (Dh ⁰)	0.20	0.04	
$S(J/\psi \pi^0)$	0.10	0.02	IL
$S(D^+D^-)$	0.20	0.03	ľ
$S(\phi K^0)$	0.13	0.02 (*)	
$S(\eta' K^0)$	0.05	0.01 (*)	
$S(K_S^0 K_S^0 K_S^0)$ $S(K_S^0 \pi^0)$	0.15	0.02 (*)	
$S(K_{S}^{0}\pi^{0})$	0.15	0.02 (*)	
$S(\omega K_S^0)$	0.17	0.03 (*)	
$S(f_0K_S^0)$	0.12	0.02 (*)	
γ (B \rightarrow DK, D \rightarrow CP eigenstates)	$\sim 15^{\circ}$	2.5°	
γ (B \rightarrow DK, D \rightarrow suppressed state	es) $\sim 12^{\circ}$	2.0°	
$\gamma (B \rightarrow DK, D \rightarrow multibody states)$) ~ 9°	1.5°	
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1–2°	
$\alpha (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°	
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	1–2° (*)	
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2°	
α (combined)	$\sim 6^{\circ}$	1–2° (*)	
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^0_S\pi^{\mp})$	20°	5°	

† exp. syst. limited

* theory syst. limited

most measurements with π^0 , γ , ν , many K^0 's cannot be done at LHCb


SuperB Υ (4S) B Physics reach, 2

Observable	B Factories (2 ab^{-1})	Super <i>B</i> (75 <i>ab</i> ⁻¹)
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
V _{cb} (inclusive)	1% (*)	0.5% (*)
V _{ub} (exclusive)	8% (*)	3.0% (*)
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$\mathcal{B}(B o au u)$	20%	4% (†)
$\mathcal{B}(B o \mu \nu)$	visible	5%
$\mathcal{B}(B o D au \nu)$	10%	2%
$\mathcal{B}(B \to \rho \gamma)$	15%	3% (†)
$\mathcal{B}(B o \omega \gamma)$	30%	5%
$A_{CP}(B o K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b ightarrow s \gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K_S^0\pi^0\gamma)$	0.15	0.02 (*)
$S(ho^0\gamma)$	possible	0.10
$A_{CP}(B \to K^* \ell \ell)$	7%	1%
$A^{FB}(B \to K^* \ell \ell) s_0$	25%	9%
$A^{FB}(B \to X_s \ell \ell) s_0$	35%	5%
$\mathcal{B}(B \to K v \overline{v})$	visible	20%
$\mathcal{B}(B \to \pi \nu \overline{\nu})$	_	possible

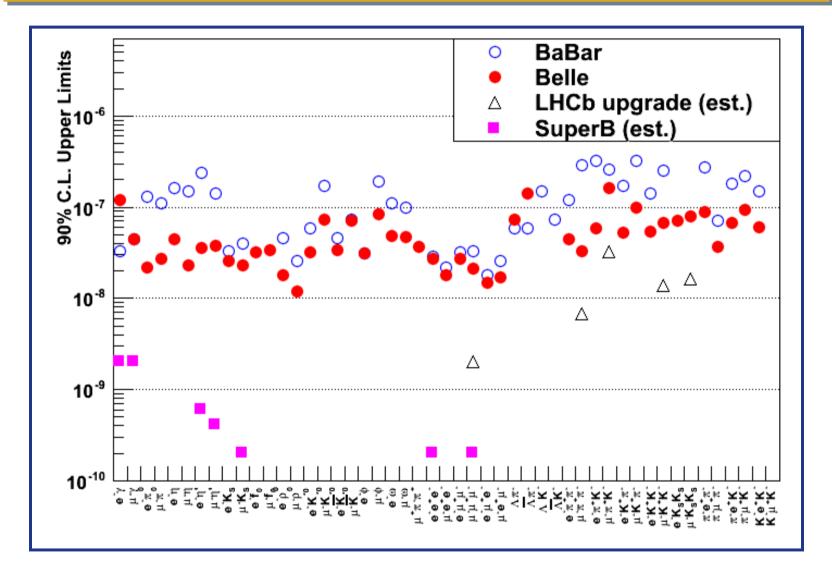
†	exp.	syst.	limited	
---	------	-------	---------	--

* theory syst. limited

most measurements with π^0 , γ , ν , many K^0 's cannot be done at LHCb

NP searches with Tau Lepton Flavour Violating decays

many NP models predict tau LFV within the plannes Super B-factories sensitivity

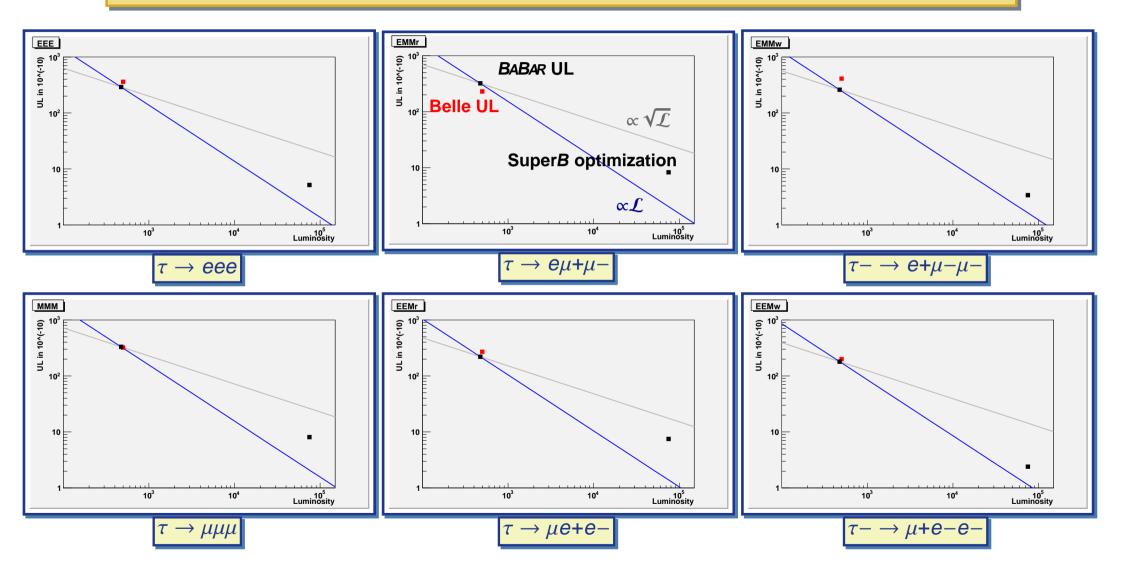

unambiguous NP probe, negligible theory uncertainties

Super B-factorie complementary with MEG

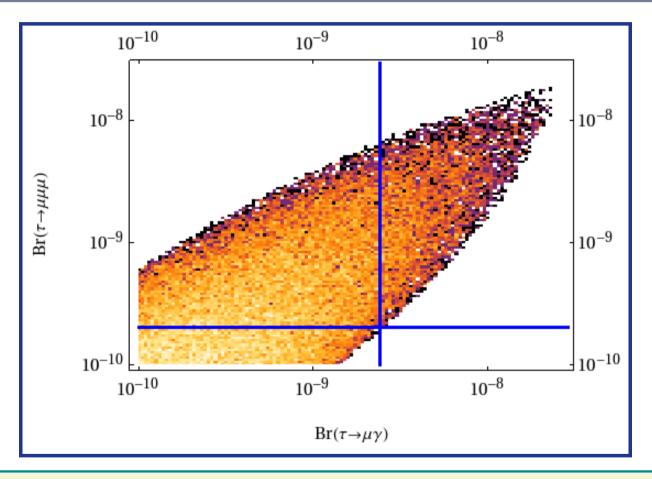
 $(\mu \rightarrow e\gamma)$ can be accidentally suppressed, tau measurements are complementary)

• best channels: $\tau \to \mu \gamma, \tau \to 3\ell, \tau \to \mu \rho, \tau \to \mu \eta$

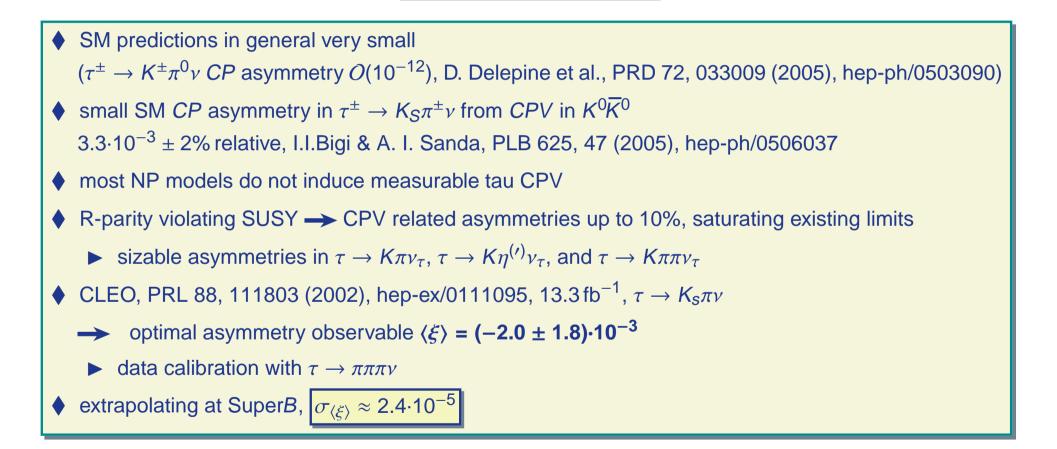
SuperB 10–100 times more sensitive than BABAR to tau LFV modes


A. Lusiani (INFN & SNS, Pisa)

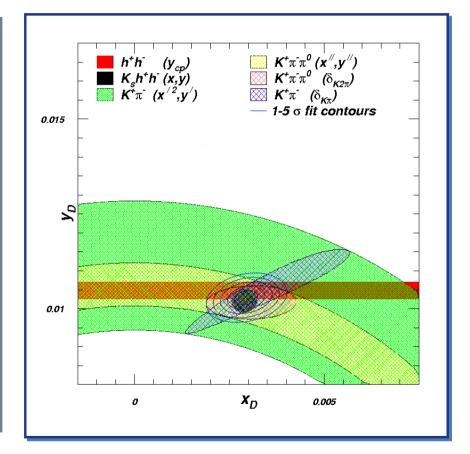
Future Super Flavour Factories


 $\tau \rightarrow 3\ell$ 90% CM upper limit extrapolations:

vs. re-optimization



SuperB $\tau \rightarrow \ell \gamma$ constraints on LHT model with breaking scale at 500 GeV


- SuperB reach from arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics
- NP predictions from M. Blanke et al. arXiv:0906.5454

Tau CPV at SuperB

SuperB D^0 -mixing reach using $\Upsilon(4S)$ data

SuperB 75 ab ⁻¹ a	at <i>Y</i> (4 <i>S</i>)			
Parameter	$x \times 10^3$	<i>y</i> × 10 ³	δ _{Kπ} (°)	δ _{Kππ} (°)
σ (stat)	0.18	0.11	1.3	2.7
σ (stat) +(syst)	0.42	0.17	2.2	+3.3 -3.4
SuperB 75 ab ⁻¹ a				
SuperB 75 ab ⁻¹ a (measure D strong Parameter				
(measure <i>D</i> strong	g phases or	n entangled	D's at cha	irm threshold)
(measure <i>D</i> strong Parameter	g phases or $x \times 10^3$	th entangled $y \times 10^3$	D's at cha $\delta_{K\pi}$ (°)	arm threshold) $\delta_{K\pi\pi}$ (°)

Sensitivity of SuperB to specific NP models

list of NP models, full description in

- W.Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, arXiv:0909.1333 [hep-ph]
- arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics
- AC (SUSY) abelian model by Agashe and Carone based on a U(1) flavour symmetry
- RVV2 (SUSY) non-abelian model by Ross, Velasco-Sevilla and Vives
- AKM (SUSY) non-abelian model by Antusch, King and Malinsky
- δLL (SUSY) purely left-handed currents with CKM-like mixing angles
- FBMSSM flavour-blind MSSM
- GUT-CMM SUSY GUT
- SSU(5) SUSY GUT SU(5)
- LHT Littlest Higgs with T-parity
- RS Randall-Sundrum

Sensitivity of flavour golden modes to specific NP models

Observable/mode	H^+	H^+ MFV non-MFV NP Right-handed L1			LTH	H SUSY					
	high $\tan \beta$		A 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM
$egin{array}{c} au o \mu \gamma \ au o \ell \ell \ell \end{array} \end{array}$						***	***	***	*	***	***
$egin{aligned} B & o au u, \mu u \ B & o K^{(*)+} u \overline{ u} \ S & o K^0_S \pi^0 \gamma \end{aligned}$	* * *(CKM)		*	***	***		*	*	*	*	*
S in other penguin modes $A_{CP}(B \rightarrow X_s \gamma)$			* * *(CKM) * * *		***		*** *	** *	* *	*** ***	*** ***
$egin{aligned} BR(B o X_s \gamma) \ BR(B o X_s \ell \ell) \ B o K^{(*)} \ell \ell \ (ext{FB Asym}) \end{aligned}$		***	*	*	*		*	*	*	***	***
$egin{array}{llllllllllllllllllllllllllllllllllll$							*** ***	*** ***	*** ***	*** *	***
a _{sl}						***					
Charm mixing CPV in Charm	**						***	*	*	*	*

 \checkmark = SuperB can measure this

More information on the golden matrix can be found in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312.

SuperB reach compared (1), Isidori/Nir/Perez, Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

Observable	SM prediction	Theory error	Present result	Future error	Future Facility	
$ V_{us} [K \to \pi \ell \nu]$	input	$0.5\% ightarrow 0.1\%_{Latt}$	0.2246 ± 0.0012	0.1%	K factory	
$ V_{cb} [B \to X_c \ell v]$	input	1%	$(41.54 \pm 0.73) imes 10^{-3}$	1%	SuperB 50 ab ⁻¹	
$ V_{ub} [B \to \pi \ell \nu]$	input	$10\% ightarrow 5\%_{Latt}$	$(3.38 \pm 0.36) imes 10^{-3}$	4%	SuperB 50 ab ⁻¹	
γ [$B \rightarrow DK$]	input	< 1°	(70 <mark>+27</mark>)°	3°	LHCb	
S _{Bd} →ψK	$sin(2\beta)$	<i>≲</i> 0.01	0.671 ± 0.023	0.01	LHCb	
$S_{B_s \to \psi \phi}$	0.036	≲0.01	$0.81^{+0.12}_{-0.32}$	0.01	LHCb	
$S_{B_d \to \phi K}$	$sin(2\beta)$	≲0.05	0.44 ± 0.18	0.1	LHCb	
$S_{B_S \to \phi \phi}$	0.036	≲0.05	—	0.05	LHCb	
$S_{B_d \to K^* \gamma}$	few imes 0.01	0.01	-0.16 ± 0.22	0.03	SuperB 50 ab ⁻¹	
	few $ imes$ 0.01	0.01	—	0.05	LHCb	
A_{SI}^{d}	-5×10^{-4}	10 ⁻⁴	$-(5.8\pm3.4) imes10^{-3}$	10 ⁻³	LHCb	
S _{Bs→φγ} A ^d _{SL} A ^s _{SL}	2×10^{-5}	< 10 ⁻⁵	$(1.6 \pm 8.5) \times 10^{-3}$	10 ⁻³	LHCb	

SuperB reach compared (2), Isidori/Nir/Perez, Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

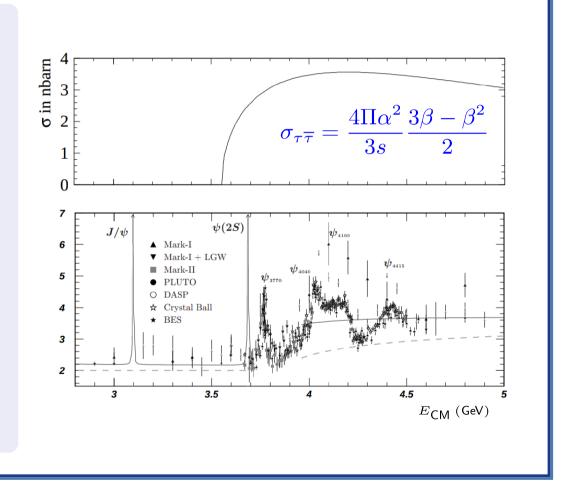
Observable	SM prediction	Theory error	Present result	Future error	Future Facility
$A_{CP}(b ightarrow s \gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	SuperB 50 ab ⁻¹
$\mathcal{B}(B o au u)$	1×10^{-4}	$20\% ightarrow 5\%_{Latt}$	$(1.73 \pm 0.35) imes 10^{-4}$	5%	SuperB 50 ab ⁻¹
$\mathcal{B}(B o \mu \nu)$	4×10^{-7}	$20\% ightarrow 5\%_{Latt}$	< 1.3 × 10 ⁻⁶	6%	SuperB 50 ab ⁻¹
$\mathcal{B}(B_{S} \to \mu^+ \mu^-)$	3×10^{-9}	$20\% \rightarrow 5\%_{Latt}$	< 5 × 10 ⁻⁸	10%	LHCb
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	1×10^{-10}	$20\% \rightarrow 5\%_{Latt}$	< 1.5 × 10 ⁻⁸	[?]	LHCb
$A_{FB}(B \rightarrow K^* \mu^+ \mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb
$B \to K v \overline{v}$	4×10^{-6}	$20\% ightarrow 10\%_{Latt}$	$< 1.4 \times 10^{-5}$	20%	SuperB 50 ab ⁻¹
$ q/p _{D-mixing}$	1	< 10 ⁻³	$(0.86^{+0.18}_{-0.15})$	0.03	SuperB 50 ab ⁻¹
ϕ_D	0	< 10 ⁻³	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	SuperB 50 ab ⁻¹
$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$	$8.5 imes 10^{-11}$	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory
$\mathcal{B}(K_L \to \pi^0 v \overline{v})$	$2.6 imes 10^{-11}$	10%	$< 2.6 \times 10^{-8}$	[?]	K factory
$R^{(e/\mu)}(K o \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498\pm 0.014)\times 10^{-5}$	0.1%	K factory
$\mathcal{B}(t \to c Z, \gamma)$	$O(10^{-13})$	$O(10^{-13})$	$< 0.6 \times 10^{-2}$	$O(10^{-5})$	LHC (100 fb ⁻¹)

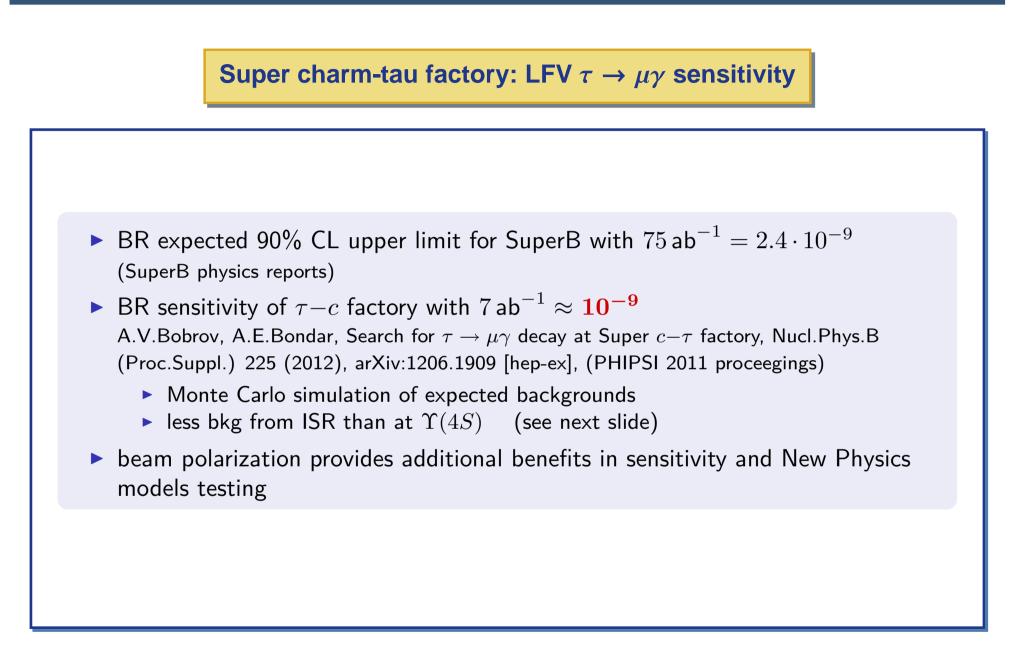
SuperB vs. LHCb for 5 NP models (P.Paradisi, SuperB meeting, Dec 2011)

	SSU(5)	AC	RVV2	AKM	δLL	FBMSSM	
$S_{\phi K_S}$	***	***	••		***	***	
$A_{CP}(B \rightarrow X_s \gamma)$					***	***	SuporP
$B ightarrow {\cal K}^{(*)} uar u$							Suberr
$\tau \to \mu \gamma$	***	***	***		***	***	
$D^0 - ar{D}^0$		***					SuperB
$A_{7,8}(B \rightarrow K^* \mu^+ \mu^-)$					***	***	VS.
$A_9(B ightarrow K^* \mu^+ \mu^-)$	-						<i>KHCb</i>
$egin{array}{c} egin{array}{c} egin{array}$	***	***	***	***			LHCD
$B_{s} ightarrow \mu^{+} \mu^{-}$	***	***	***	***	***	***	гнср
€K	***		***	***			
$K^+ ightarrow \pi^+ u ar{ u}$							
$K_L \to \pi^0 \nu \bar{\nu}$							
$\mu ightarrow oldsymbol{e} \gamma$	***	***	***	***	***	***	
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	
d _n	***	***	***	***	••	***	
d _e	***	***	***	••		***	
$(g-2)_{\mu}$	***	***	***	••	***	***	

elaboration using information in W.Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, arXiv:0909.1333 [hep-ph]

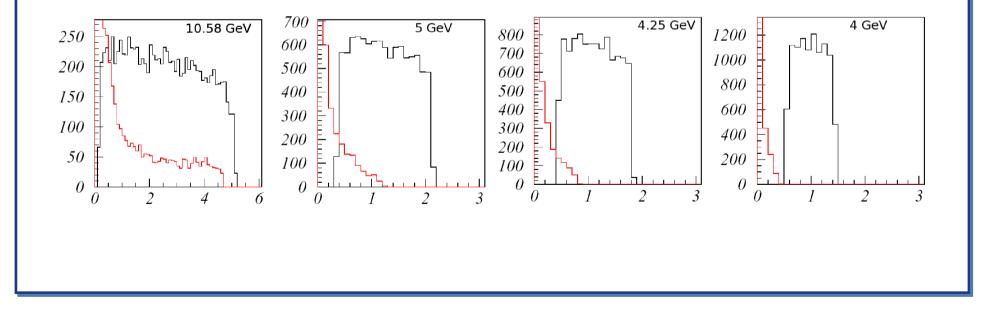
9th Franco-Italian Meeting on B Physics, 18-19 February 2013, LAPP


Tau Physics at Super charm-tau factory


Super charm-tau factory

- $\blacktriangleright \ \sigma_{\tau\overline{\tau}}(m_{\tau\overline{\tau}}) \simeq 0.1 \, \mathrm{nb}$
- $\blacktriangleright \ \sigma_{\tau\overline{\tau}}(\Psi(3770)) = 2.5 \,\mathrm{nb}$
- ► $\sigma_{\tau\overline{\tau}}(4.25 \,\text{GeV}) = 3.5 \,\text{nb} \,(\text{max})$
- ► $\mathcal{L} \simeq 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- integrated $\mathcal{L} = 7.5 \,\mathrm{ab}^{-1}$
- Number of $au \overline{ au} pprox 2.3 \cdot 10^{10}$

SuperB


- ► $\sigma_{\tau\overline{\tau}}(\Upsilon(4S)) = 0.92 \,\mathrm{nb}$
- ► $\mathcal{L} \simeq 10^{36} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- integrated $\mathcal{L} = 75 \text{ ab}^{-1}$
- Number of $au \overline{ au} = 6.9 \cdot 10^{10}$

Super charm-tau factory: at low CM energies, less bkg from ISR photons

- ▶ $\tau \rightarrow \mu \gamma$ background from ISR photon + SM $\tau \rightarrow \mu \nu \overline{\nu}$ decay
- ▶ at $c-\tau$ factory, ISR photon has lower energy than the photon from $\tau \to \mu \gamma$
 - H.Hayashii, "Search for $\tau \to \mu/e\gamma$ at the Super- τ -charm Factory", Tau 2008 Workshop Satellite meeting on the Super τ -charm factory

Super charm-tau factory: other Tau Physics topics

- references:
 - Physics at BES-III, J. of Modern Physics A24.1 supp (2009), arXiv:0809.1869 [hep-ex]
 - ► "A PROJECT OF SUPER c-τ FACTORY IN NOVOSIBIRSK", Conceptual Design Report, 2011, Budker, Novosibirsk
- improve lepton universality tests (tau mass and leptonic BRs)
- close to threshold, it is possible to tag a single tau hadronic decay with $2m_{\tau}E_{had} = m_{\tau}^2 + m_{had}^2$
- measuring hadronic BRs and spectra one may obtain the most precise experimental measurements of α_s , V_{us} and m_s
- study of the Lorentz structure of the leptonic decays (EW test)
- CPV in tau decay (both rate asymmetry and angle differential asymmetry)

Conclusion

- Super *B*-factory Bellell is on track to begin data-taking in 2016
- Bellell will provide several valuable heavy flavour measurements that are not feasible elsewhere
- Bellell will provide the best facility for tau physics LFV searches and measurements
- a super charm-tau factory could provide a valuable facility for charm and tau physics, which may be competitive in some areas like search for LFV in $\tau \rightarrow \mu \gamma$