

LHCb

* Une expérience dédiée à la violation de CP au LHC

→ mesure de précision dans le domaine des mésons beaux et charmés

Les hadrons beaux

Les mésons neutres : B^0 / B_d (bd) et B_s (bs)

- → oscillent comme les kaons
 - mais plus rapidement
- \rightarrow masse :
 - $\Box B_{d} = 5.3 \text{ GeV}/c^{2}$
 - $\Box B_{d} = 5.4 \text{ GeV/}c^{2}$
- → durée de vie : τ = 1.5 10⁻¹²s

□ D = ~ 1 cm

LHCb : a dedicated flavour physics experiment at LHC

ATLAS & CMS search for direct production of new states

LHCb designed to see their indirect effect on charm & beauty decays via virtual production in loop diagrams

Key topics in LHCb :

- CP violation : check whether it is due to a single phase in the quark mixing (CKM) matrix, as in the Standard Model
- Rare decays : FCNC decays (e.g. BS $\rightarrow \mu+\mu$ -) are strongly suppressed in the Standard Model, may be enhanced by new physics processes

Beauty and Charm production at LHC

LHC is a Flavor Factory, @ 7 TeV :

- $-\sigma(pp \rightarrow cc X) = ~6 mb$ [LHCb-CONF-2010-013]
- σ(pp → bb X) = ~0.3 mb [PLB 694 (2010) 209]
- B factories : $\sigma(e+e- \rightarrow bb)@Y(4S) = ~1 nb$

Challenging background condition :

- σ(pp → X)inel = 60 mb [JINST 7 (2012) P01010]

All B hadron species are produced cf. P. Bobovici's talk

- New states discovered, e.g. Ab*(5912/5920) orbitally-excited states [arXiv:1205.3452v1]
- − New decay mode discovered, e.g. BC+ \rightarrow J/Ψ π+π-π+ [PRL 108, 2012, p. 251802]
- BS is rich and little explored

bb/cc pairs are produced predominantly the forward or backward directions

The LHCb Collaboration

LHCb : a forward spectrometer

LHCb : a forward spectrometer

LHCb : a forward spectrometer optimised for heavy flavors

LHCb detector

Vertex detection : the VErtex LOcator (VELO)

Reconstruction of primary and decay vertices, track seeds, + trigger input

The VELO seen by the LHC beams

21 modules of R- Φ sensors

Movable device (retracted for safety during beam injection) :

- 35 mm from beam out of physics
- 8 mm from beam during physics

Vertex detection : performances

Reconstructed beam-gaz vertices (used for luminosity measurement)

The Tracking System

System :

- 1 tracking station before magnet (TT) :
 - → 4 layers of Si-Strips sensors
- Magnet
 - \rightarrow \int Bdl = ~ 4 Tm ; polarity switched regularly
- 3 tracking stations after magnet,
- 4 layers each split into:
 - → Inner Tracker (Si-sensors)
 - → Outer Tracker (straw tube)

Track finding :

- Long tracks : high-momentum tracks traversing the full LHCb tracking setup
 - → combine track seeds in VELO and T-stations and add TT hits
 - → measured with highest precision
 - \rightarrow most numerous in the main LHCb acceptance

T1

TT

Tracking performances

Momentum resolution : $\sigma(p)/p = 0.4-0.6\%$ (5-100 GeV/c)

Momentum scale and detector alignment well controlled :

B hadron mass world's best measurements (2010 data only, 37pb⁻¹)

Quantity	LHCb	Best previous	PDC fit	Ē
Quality	measurement	measurement		Ē
$M(B^+)$	5279.38 ± 0.35	5279.10 ± 0.55	5279.17 ± 0.29	7
$M(B^0)$	5279.58 ± 0.32	5279.63 ± 0.62	5279.50 ± 0.30	80
$M(B_s^0)$	5366.90 ± 0.36	5366.01 ± 0.80	5366.3 ± 0.6	(20
$M(\Lambda_b^0)$	5619.19 ± 0.76	5619.7 ± 1.7	_	012
$M(B^0) - M(B^+)$	0.20 ± 0.20	0.33 ± 0.06	0.33 ± 0.06	.) N
$M(B_s^0) - M(B^+)$	87.52 ± 0.32	—	_	41
$M(\Lambda_b^0) - M(B^+)$	339.81 ± 0.72	—	_	_

[ATLAS CONF-2011-050] ~ 22 MeV/c²

Particle identification : the RICH detectors

 K/π separation over the full 1-100 GeV/c range

The detectors :

- RICH1 :
 - → full angular acceptance
 - → covers low momentum range : 1-60 GeV/c
 - → aerogel & C4F10 radiators
- RICH2 :
 - → limited angular acceptance (~ \pm 15 → ~ \pm 100 mrad)
 - → high momentum range : ~15 GeV/c > 100 GeV/c
 - → CF4 radiator
- Hybrid Photon Detectors (HPDs)
 - → 500 each with 1024 pixels
 - \rightarrow High efficiency, low noise

Performances

- ε ≈ 95 % for 5% π-K misID probability
- performances well described by simulation

Particle identification : illustration of K- π separation

15

Particle identification : the calorimeters

The ECAL detector

Scintillator Pad Detector / PreShower :

- robust e/y and e/hadron separation
- single layer scintillator tiles separated by Pb sheet (2.5 X0)
- $\epsilon(e\pm) = 90\%$ for 5% e-hadron MisID

Electromagnetic CALorimeter :

- e and γ energy measurement
- trigger on electromagnetic decay channels
- Pb plates / scintillator tiles (25 X0)
- − $\sigma(E)/E = 10\%/\sqrt{E(GeV)} + 1\%$ (nominal)

Hadronic CALorimeter :

- energy measurement for hadron
- trigger on hadronic decay channels
- Fe plates / scintillator tiles
- $\sigma(E)/E = 69\%/\sqrt{E(GeV)} + 9\%$ (nominal), moderate but enough for triggering

Particle identification : electron, photon and π^0

Particle identification : the muon system

- 5 stations interleaved with iron absorbers
- muon identification
- trigger on muonic decay channels
- Muon ID ε(μ) = 97 % for 1-3% π-μ MisID

Trigger & stripping

L0 : custom electronic @40Mhz, 4 µs latency

- search for high-pT μ , e, y, hadron candidates
 - \rightarrow pT(µ)>1.4; ET(e/y)>2.7; ET(hadron)>3.6 [GeV]

HLT : software trigger

- ~ 30000 tasks in parallel on ~1500 nodes
- HLT1 : add Impact Parameters cuts
- HLT2 : global event reconstruction tuned for HLT

Efficiencies :

- di-muons channels : ~ 90 %
- multi-body hadronic final states : 30 %

cf. H. Dijkstra's talk

Offline : ~1010 events, 700 TB recorded/year

- centralized stripping selections to reduces to samples with 0(107) events for individual analyses
 - \rightarrow ~800 selections

LHCb Operation

Data Taking

LHCb Integrated Luminosity in 2011 and 2012

Recorded Luminosity :

- 2010 : 37 pb-1 @ 7 TeV
- 2011: 1 fb-1 @ 7 TeV
- 2012 : aim at 2.2 fb-1 @ 8 TeV
- (as of end of September : 1.4 fb-1)
 - \rightarrow expect σ (bb) increased by ~15% w.r.t 7TeV

Integrated LHCb Efficiency breakdown in 2012

Efficiencies :

- > 90 % data taking efficiency
- ~99 % working detector channels
- > 99% of recorded data good for analysis

Luminosity

LHCb designed luminosity :

- Linst = 2x1032 cm-2s-1 with μ =0.4 (# of visible pp int./crossing team 1
- Precision physics depending on vertex structure
 - \rightarrow easier in a low-pileup environment

Luminosity levelling at LHCb

- run with constant luminosity
 - → beam overlap adjusted regularly
- automatic procedure between LHC&LHCb

2011 & 2012 instantaneous luminosities :

2012 novelties

Optimisation of data acquisition :

- L0 rate from 925 kHz to 975 kHz
- allow to run at higher luminosity

Deferred HLT triggering :a

- the HLT processing of a fraction (20%) of the L0 rate is deferred
- deferred event are written to disk and processed by the HLT in the inter-fill gap
- equivalent to 20% gain in CPU power

LHC optics :

- beams crossing angle change from horizontal plane in 2011 to vertical plane in 2012
- decoupled from LHCb magnet polarity change (H bending)
- minimize systematic effects

2011

Conclusions

LHCb detector achievements :

- excellent vertex resolution
- great tracking performances
- robust particle identification
- flexible and efficient trigger

LHCb operation :

- smooth and efficient
- sustain luminosity higher than designed value

LHCb able to deliver high-quality physics results

- ~70 submitted papers
- world's best measurements of many important physics parameters
- upgrade activities launched

Conclusions

LHCb detector achievements :

- excellent vertex resolution
- great tracking performances
- robust particle identification
- flexible and efficient trigger

LHCb operation :

- smooth and efficient
- sustain luminosity higher than designed value

LHCb able to deliver high-quality physics results

- ~70 submitted papers
- world's best measurements of many important physics parameters
- upgrade activities launched \rightarrow H. Dijkstra

- \rightarrow Overview \rightarrow M. Patel
- → Rare decays \rightarrow M.O. Bettler
- \rightarrow CP violation \rightarrow C. Fitzpatrick
- \rightarrow b-hadron production \rightarrow B.Popovici

Thank you for your attention

[∠] conclusion