Arbres de décision Decision trees

Yann Coadou

CERN

School of Statistics SOS'08, IPHC Strasbourg 3 July 2008

Outline

- Introduction
- 2 Growing a tree
 - Algorithm
 - Tree parameters
 - Splitting a node
 - Variable selection
 - Pruning a tree
- Tree (in)stability
- Boosting
 - Introduction
 - AdaBoost
 - Other boosting algorithms
- **6** Other averaging techniques
- Conclusion
- 8 Software
- References

Before we go on...

!!! VERY IMPORTANT !!!

Understand your inputs well before you start playing with multivariate techniques

Introduction

Decision tree origin

Machine-learning technique, widely used in social sciences

L. Breiman et al., "Classification and Regression Trees" (1984)

Basic principle

- Extend cut-based selection
 - many (most?) events do not have all characteristics of signal or background (or we would not be attending SoS'08...)
 - try not to rule out events failing a particular criterion
- Keep events rejected by one criterion and see whether other criteria could help classify them properly

Binary trees

- Trees can be built with branches splitting into many sub-branches
- In this lecture: mostly binary trees

Growing a tree

- **Growing a tree**
 - Algorithm
 - Tree parameters
 - Splitting a node
 - Variable selection

- - Introduction
 - AdaBoost
 - Other boosting algorithms

Tree building algorithm

Start with all events = first (root) node

- sort all events by each variable
- for each variable, find splitting value with best separation between two children
 - mostly signal in one child
 - mostly background in the other
- select variable and splitting value with best separation, produce two branches (nodes)
 - events failing criterion on one side
 - events passing it on the other

Keep splitting

- Now have two new nodes. Repeat algorithm recursively on each node
- Iterate until stop criterion is reached
- Splitting stops: terminal node = leaf

Decision tree output

Run event through tree

- Start from root node
- Apply first best cut
- Go to left or right child node
- Apply best cut for this node
- ...Keep going until...
- Event ends up in leaf

DT Output

- Purity $\left(\frac{s}{s+h}\right)$ of leaf, close to 1 for signal and 0 for background
- \bullet or binary answer (discriminant function +1 for signal, -1 for background) based on purity above/below specified value (e.g. $\frac{1}{2}$) in leaf

 Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and H_T (scalar sum of p_T 's of all objects in the event)

- Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and H_T (scalar sum of p_T 's of all objects in the event)
 - sort all events by each variable:

•
$$p_T^{s_1} \le p_T^{b_{34}} \le \cdots \le p_T^{b_2} \le p_T^{s_{12}}$$

•
$$H_{T_i}^{b_5} \leq H_{T_i}^{b_3} \leq \cdots \leq H_{T_i}^{s_{67}} \leq H_{T_i}^{s_{43}}$$

•
$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and H_T (scalar sum of p_T 's of all objects in the event)
 - sort all events by each variable:

•
$$p_T^{s_1} \le p_T^{b_{34}} \le \cdots \le p_T^{b_2} \le p_T^{s_{12}}$$

•
$$H_T^{b_5} \le H_T^{b_3} \le \cdots \le H_T^{s_{67}} \le H_T^{s_{43}}$$

•
$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - H_T < 242 GeV, separation = 5
 - $M_t < 105$ GeV, separation = 0.7

- Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and H_T (scalar sum of p_T 's of all objects in the event)
 - sort all events by each variable:

•
$$p_T^{s_1} \le p_T^{b_{34}} \le \cdots \le p_T^{b_2} \le p_T^{s_{12}}$$

•
$$H_T^{b_5} \le H_T^{b_3} \le \cdots \le H_T^{s_{67}} \le H_T^{s_{43}}$$

•
$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - H_T < 242 GeV, separation = 5
 - $M_t < 105$ GeV, separation = 0.7

- Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and H_T (scalar sum of p_T 's of all objects in the event)
 - sort all events by each variable:

•
$$p_T^{s_1} \le p_T^{b_{34}} \le \cdots \le p_T^{b_2} \le p_T^{s_{12}}$$

•
$$H_T^{b_5} \le H_T^{b_3} \le \cdots \le H_T^{s_{67}} \le H_T^{s_{43}}$$

•
$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - H_T < 242 GeV, separation = 5
 - $M_t < 105$ GeV, separation = 0.7
- split events in two branches: pass or fail $H_T < 242 \text{ GeV}$

- Consider signal (s_i) and background (b_j) events described by 3 variables: p_T of leading jet, top mass M_t and H_T (scalar sum of p_T 's of all objects in the event)
 - sort all events by each variable:

•
$$p_T^{s_1} \le p_T^{b_{34}} \le \cdots \le p_T^{b_2} \le p_T^{s_{12}}$$

•
$$H_T^{b_5} \le H_T^{b_3} \le \cdots \le H_T^{s_{67}} \le H_T^{s_{43}}$$

•
$$M_t^{b_6} \le M_t^{s_8} \le \dots \le M_t^{s_{12}} \le M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - $H_T < 242$ GeV, separation = 5
 - $M_t < 105$ GeV, separation = 0.7
- split events in two branches: pass or fail $H_T < 242 \text{ GeV}$
- Repeat recursively on each node

- Consider signal (s_i) and background (b_j) events described by 3 variables: p_T of leading jet, top mass M_t and H_T (scalar sum of p_T 's of all objects in the event)
 - sort all events by each variable:

•
$$p_T^{s_1} \leq p_T^{b_{34}} \leq \cdots \leq p_T^{b_2} \leq p_T^{s_{12}}$$

•
$$H_T^{b_5} \leq H_T^{b_3} \leq \cdots \leq H_T^{s_{67}} \leq H_T^{s_{43}}$$

•
$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - $H_T < 242$ GeV, separation = 5
 - \bullet $M_t < 105$ GeV, separation = 0.7
- split events in two branches: pass or fail $H_T < 242 \text{ GeV}$

- Repeat recursively on each node
- Splitting stops: e.g. events with $H_T < 242$ GeV and $M_t > 162$ GeV are signal like (p = 0.82)

Tree construction parameters

Normalization of signal and background before training

same total weight for signal and background events

Selection of splits

- list of questions (variable_i < cut_i?)
- goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

- minimum leaf size (e.g. 100 events)
- insufficient improvement from splitting
- perfect classification (all events in leaf belong to same class)

Assignment of terminal node to a class

• signal leaf if purity > 0.5, background otherwise

Splitting a node

Impurity function i(t)

- maximum for equal mix of signal and background
- symmetric in p_{signal} and Pbackground

- minimal for node with either signal only or background only
- strictly concave ⇒ reward purer nodes (favours end cuts with one smaller node and one larger node)

Optimal split

 Decrease of impurity for split s of node t into children t_I and t_R (goodness of split): $\Delta i(s,t) = i(t) - p_L \cdot i(t_L) - p_R \cdot i(t_R)$

• Aim: find split s* such that:

$$\Delta i(s^*, t) = \max_{s \in \{\text{splits}\}} \Delta i(s, t)$$

Stop splitting

- When not enough improvement $(\Delta i(s^*,t)<\beta)$
- When not enough statistics
- When node is pure signal or pure background

Splitting a node: examples

Node purity

• Signal (background) event i with weight w_s^i (w_b^i)

$$p = \frac{\sum_{i \in \textit{signal}} w_s^i}{\sum_{i \in \textit{signal}} w_s^i + \sum_{i \in \textit{bkg}} w_b^j} \qquad \left(\text{remember } \mathcal{D}(x) = \frac{s(x)}{s(x) + b(x)} \right)$$

- Signal purity (= purity) $p_s = p = \frac{s}{s+b}$
- Background purity $p_b = \frac{b}{s+b} = 1 p_s = 1 p$

Common impurity functions

- misclassification error = 1 max(p, 1 p)
- (cross) entropy $= -\sum_{i=s,b} p_i \log p_i$
- Gini index

Splitting a node: Gini index of diversity

Defined for many classes

• Gini = $\sum_{i \neq j} p_i p_j$

Interpretation

- Assign random object to class i with probability p_i .
- Probability that it is actually in class j is p_j
- \Rightarrow Gini = probability of misclassification

For two classes (signal and background)

- $i = s, b \text{ and } p_s = p = 1 p_b$
- \Rightarrow Gini = $1 \sum_{i=s,b} p_i^2 = 2p(1-p) = \frac{2sb}{(s+b)^2}$
- Most popular in DT implementations
- Usually similar performance to e.g. entropy

Variable selection I

Reminder

• Need model giving good description of data

Playing with variables

- Number of variables:
 - not affected too much by "curse of dimensionality"
 - CPU consumption scales as nN log N with n variables and N training events
- Insensitive to duplicate variables (give same ordering ⇒ same DT)
- Variable order does not matter: all variables treated equal
- Irrelevant variables:
 - no discriminative power (e.g. age of analyst) ⇒ not used
 - only costs a little CPU time
- Order of training events is irrelevant

Variable selection II

Transforming input variables

- Completely insensitive to the replacement of any subset of input variables by (possibly different) arbitrary strictly monotone functions of them:
 - let $f: x_i \to f(x_i)$ be strictly monotone
 - if x > y then f(x) > f(y)
 - ordering of events by x_i is the same as by $f(x_i)$
 - ullet \Rightarrow produces the same DT
- Examples:
 - ullet convert MeV ightarrow GeV
 - no need to make all variables fit in the same range
 - no need to regularise variables (e.g. taking the log)
- ⇒ Some immunity to outliers

Variable selection III

Linear combinations of input variables

- Until now, answering questions like "is $x_i < c_i$?"
- Instead, take set of coefficients $a=(a_1,..,a_n), ||a||^2=\sum_i a_i^2=1$
- Question: "is $\sum_i a_i x_i < c_i$?"
- Choose optimal split $s^*(a^*)$ and set of linear coefficients a^* that maximises $\Delta i(s^*(a),t)$
- Tricky to implement, very CPU intensive

Variable ranking

- Ranking of variable x_i : add up decrease of impurity at each node where x_i is used
- Largest decrease of impurity = best variable

Variable selection IV

Shortcoming: masking of variables

- x_i may be just a little worse than x_i but will never be picked
- x_i is ranked as irrelevant
- But remove x_i and x_i becomes very relevant

Solution: surrogate split

- Compare which events are sent left or right by optimal split and by any other split
- Give higher score to split that mimics better the optimal split
- Highest score = surrogate split
- Can be included in variable ranking
- Helps in case of missing data: replace optimal split by surrogate

Pruning a tree I

Why prune a tree?

- Possible to get a perfect classifier on training events
- Mathematically misclassification error can be made as little as wanted
- E.g. tree with one class only per leaf (down to 1 event per leaf if necessary)
- Training error is zero
- But run new independent events through tree (testing or validation sample): misclassification is probably > 0, overtraining
- Pruning: eliminate subtrees (branches) that seem too specific to training sample:
 - a node and all its descendants turn into a leaf

Pruning a tree II

Expected error pruning

- Grow full tree
- When result from children not significantly different from result of parent, prune children
- Can measure statistical error estimate with binomial error $\sqrt{p(1-p)/N}$ for node with purity p and N training events
- No need for testing sample

Pruning a tree III

Cost-complexity pruning

- Idea: penalise "complex" trees (many nodes/leaves) and find compromise between good fit to training data (larger tree) and good generalisation properties (smaller tree)
- With misclassification rate R(T) of subtree T (with N_T nodes) of fully grown tree T_{max} :

cost complexity
$$R_{\alpha}(T) = R(T) + \alpha N_{T}$$

 $\alpha = \text{ complexity parameter}$

- Minimise $R_{\alpha}(T)$:
 - small α : pick T_{max}
 - large α : keep root node only, T_{max} fully pruned
- First-pass pruning, for terminal nodes t_L , t_R from split of t:
 - by construction $R(t) \geq R(t_L) + R(t_R)$
 - if $R(t) = R(t_L) + R(t_R)$ prune off t_L and t_R

Pruning a tree IV

Cost-complexity pruning

- For node t and subtree T_t :
 - if t non-terminal, $R(t) > R(T_t)$ by construction
 - $R_{\alpha}(\{t\}) = R_{\alpha}(t) = R(t) + \alpha \ (N_T = 1)$
 - if $R_{\alpha}(T_t) < R_{\alpha}(t)$ then branch has smaller cost-complexity than single node and should be kept
 - at critical $\alpha = \rho_t$, node is preferable
 - to find ρ_t , solve $R_{\rho_t}(T_t) = R_{\rho_t}(t)$, or:

$$\rho_t = \frac{R(t) - R(T_t)}{N_T - 1}$$

- ullet node with smallest ho_t is weakest link and gets pruned
- apply recursively till you get to the root node
- This generates sequence of decreasing cost-complexity subtrees
- Compute their true misclassification rate on validation sample:
 - will first decrease with cost-complexity
 - then goes through a minimum and increases again
 - pick this tree at the minimum as the best pruned tree

Tree (in)stability

Training sample composition

- Small changes in sample can lead to very different tree structures
- Performance on testing events may be as good, or not
- Not optimal to understand data from DT rules
- Doesn't give confidence in result:
 - DT output distribution discrete by nature
 - granularity related to tree complexity
 - tendency to have spikes at certain purity values (or just two delta functions at ± 1 if not using purity)

Tree (in)stability

Training sample composition

- Small changes in sample can lead to very different tree structures
- Performance on testing events may be as good, or not
- Not optimal to understand data from DT rules
- Doesn't give confidence in result:
 - DT output distribution discrete by nature
 - granularity related to tree complexity
 - tendency to have spikes at certain purity values (or just two delta functions at ± 1 if not using purity)

Solution: averaging

- Build several trees and average the output
- V-fold cross-validation (good for small samples)
 - divide training sample \mathcal{L} in V subsets of equal size: $\mathcal{L} = \bigcup_{\nu=1}^{N} \mathcal{L}_{\nu} \mathcal{L}_{\nu}$
 - Train tree T_v on $\mathcal{L} \mathcal{L}_v$, test on \mathcal{L}_v
 - DT output = $\frac{1}{V} \sum_{v=1...V} T_v$
- Bagging, boosting, random forests, etc.

Decision tree score card

- 🖊 🛮 Training is fast
- Human readable (not a black box)
- Deals with continuous and discrete variables simultaneously
- No need to transform inputs
- Resistant to irrelevant variables
- Works well with many variables
- **K** Good variables can be masked
- A Good variables can be masked
 - Very few parameters
- For some time still "original" in HEP
- Unstable tree structure
- Piecewise nature of output

Boosting

- - Algorithm
 - Tree parameters
 - Splitting a node
 - Variable selection

- **Boosting**
 - Introduction
 - AdaBoost
 - Other boosting algorithms

A brief history of boosting

First provable algorithm by Schapire (1990)

- Train classifier T_1 on N events
- ullet Train T_2 on new N-sample, half of which misclassified by T_1
- Build T_3 on events where T_1 and T_2 disagree
- Boosted classifier: MajorityVote(T₁, T₂, T₃)

A brief history of boosting

First provable algorithm by Schapire (1990)

- Train classifier T₁ on N events
- Train T_2 on new N-sample, half of which misclassified by T_1
- Build T_3 on events where T_1 and T_2 disagree
- Boosted classifier: MajorityVote(T₁, T₂, T₃)

Then

- Variation by Freund (1995): boost by majority (combining many learners with fixed error rate)
- Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

A brief history of boosting

First provable algorithm by Schapire (1990)

- Train classifier T_1 on N events
- ullet Train T_2 on new N-sample, half of which misclassified by T_1
- Build T_3 on events where T_1 and T_2 disagree
- Boosted classifier: MajorityVote(T₁, T₂, T₃)

Then

- Variation by Freund (1995): boost by majority (combining many learners with fixed error rate)
- Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

Recently in HEP

- MiniBooNe compared performance of different boosting algorithms and neural networks for particle ID (2005)
- D0 claimed first evidence for single top quark production (2006)
- CDF copied © (2008)

Principles of boosting

What is boosting?

- General method, not limited to decision trees
- Hard to make a very good learner, but easy to make simple, error-prone ones (but still better than random guessing)
- Goal: combine such weak classifiers into a new more stable one, with smaller error

Algorithm

- Training sample \mathbb{T}_k of N events. For i^{th} event:
 - weight w_i^k
 - vector of discriminative variables x_i
 - class label y_i = +1 for signal, -1 for background

- Pseudocode:
 - Initialise \mathbb{T}_1 for k in 1.. N_{tree} train classifier T_k on \mathbb{T}_k assign weight α_k to T_k modify \mathbb{T}_k into \mathbb{T}_{k+1}
- Boosted output: $F(T_1, ..., T_{N_{tree}})$

AdaBoost

What is AdaBoost?

- Introduced by Freund&Schapire in 1996
- Stands for adaptive boosting
- Learning procedure adjusts to training data to classify it better
- Many variations on the same theme for actual implementation
- Most common boosting algorithm around
- Usually leads to better results than without boosting

AdaBoost algorithm

- Check which events of training sample \mathbb{T}_k are misclassified by T_k :
 - $\mathbb{I}(X) = 1$ if X is true, 0 otherwise
 - for DT output in $\{\pm 1\}$: isMisclassified_k $(i) = \mathbb{I}(y_i \times T_k(x_i) \leq 0)$
 - or isMisclassified_k(i) = $\mathbb{I}(y_i \times (T_k(x_i) 0.5) \leq 0)$ in purity convention
 - misclassification rate:

$$R(T_k) = \epsilon_k = \frac{\sum_{i=1}^{N} w_i^k \times \text{isMisclassified}_k(i)}{\sum_{i=1}^{N} w_i^k}$$

- Derive tree weight $\alpha_k = \beta \times \ln((1 \epsilon_k)/\epsilon_k)$
- Increase weight of misclassified events in \mathbb{T}_k to create \mathbb{T}_{k+1} :

$$w_i^k \rightarrow w_i^{k+1} = w_i^k \times e^{\alpha_k}$$

- Train T_{k+1} on \mathbb{T}_{k+1}
- Boosted result of event i: $T(i) = \sum_{k=1}^{N_{\text{tree}}} \alpha_k T_k(i)$

From tree to forest

AdaBoost by example

• Assume $\beta = 1$

Not-so-good classifier

- Assume error rate $\epsilon = 40\%$
- Then $\alpha = \ln \frac{1-0.4}{0.4} = 0.4$
- Misclassified events get their weight multiplied by $e^{0.4}$ =1.5
- • next tree will have to work a bit harder on these events

Good classifier

- Error rate $\epsilon = 5\%$
- Then $\alpha = \ln \frac{1 0.05}{0.05} = 2.9$
- Misclassified events get their weight multiplied by $e^{2.9}=19$ (!!)
- ⇒ being failed by a good classifier means a big penalty:
 - must be a difficult case
 - next tree will have to pay much more attention to this event and try to get it right

AdaBoost error rate

Misclassification rate ϵ on training sample

ullet Can be shown to be bound: $\epsilon \leq \prod_{k=1}^{N_{tree}} 2\sqrt{\epsilon_k(1-\epsilon_k)}$

 \bullet If each tree has $\epsilon_k \neq 0.5$ (i.e. better than random guessing):

the error rate falls to zero for sufficiently large N_{tree}

Corollary: training data is over fitted

Overtraining?

- Error rate on test sample may reach a minimum and then potentially rise. Stop boosting at the minimum.
- In principle AdaBoost must overfit training sample
- In many cases in literature, no loss of performance due to overtraining
 - may have to do with fact that successive trees get in general smaller and smaller weights
 - trees that lead to overtraining contribute very little to final DT output on validation sample

Training and generalisation error

Efficiency vs. background fraction

Concrete examples I

• Using TMVA and some code modified from G. Cowan's CERN academic lectures (June 2008)

Concrete examples II

Concrete examples III

Concrete examples IV

Concrete examples V

Concrete example: XOR

Concrete example: XOR

Concrete example: XOR with 100 events

Other boosting algorithms

ϵ -Boost (shrinkage)

- reweight misclassified events by a fixed $e^{2\epsilon}$ factor
- $T(i) = \sum_{k=1}^{N_{\text{tree}}} \epsilon T_k(i)$

ϵ -LogitBoost

- reweight misclassified events by logistic function $\frac{e^{-y_i T_k(x_i)}}{1+e^{-y_i T_k(x_i)}}$
- $T(i) = \sum_{k=1}^{N_{\text{tree}}} \epsilon T_k(i)$

Real AdaBoost

- DT output is $T_k(i) = 0.5 \times \ln \frac{p_k(i)}{1 p_k(i)}$ where $p_k(i)$ is purity of leaf on which event i falls
- reweight events by $e^{-y_i T_k(i)}$
- $T(i) = \sum_{k=1}^{N_{\text{tree}}} T_k(i)$
- ϵ -HingeBoost, LogitBoost, Gentle AdaBoost, etc.

Other averaging techniques

Bagging

- Before building tree T_k take random sample of N events from training sample with replacement
- Train T_k on it
- Events not picked form "out of bag" validation sample

Other averaging techniques

Bagging

- Before building tree T_k take random sample of N events from training sample with replacement
- Train T_k on it
- Events not picked form "out of bag" validation sample

Random forests

- Same as bagging
- In addition, pick random subset of variables to consider for each node split
- Two levels of randomisation, much more stable output

Other averaging techniques

Bagging

- Before building tree T_k take random sample of N events from training sample with replacement
- Train T_k on it
- Events not picked form "out of bag" validation sample

Random forests

- Same as bagging
- In addition, pick random subset of variables to consider for each node split
- Two levels of randomisation, much more stable output

Trimming

- Not exactly the same. Used to speed up training
- After some boosting, very few high weight events may contribute
- ⇒ ignore events with too small a weight

Single top production evidence at D0 (2006)

- Three multivariate techniques: BDT, Matrix Elements, BNN
- Most sensitive: BDT

 $\sigma_{\rm s+t} = 4.9 \pm 1.4 \text{ pb}$ $\text{p-value} = 0.035\% \text{ (3.4}\sigma\text{)}$ SM compatibility: 11% (1.3 σ)

$$\sigma_s = 1.0 \pm 0.9 \; \mathrm{pb}$$
 $\sigma_t = 4.2^{+1.8}_{-1.4} \; \mathrm{pb}$

Comparison for D0 single top evidence

- Cannot know a priori which method will work best
- → Need to experiment with different techniques

Boosted decision trees in HEP studies

- MiniBooNE (e.g. physics/0408124 NIM A543:577-584, physics/0508045 NIM A555:370-385, hep-ex/0704.1500)
- D0 single top evidence (arXiv:0803.0739v1 accepted by PRD, PRL98:181802,2007)
- GLAST (same code as D0)
- BaBar (hep-ex/0607112)
- ATLAS: diboson analyses, SUSY analysis (hep-ph/0605106) JHEP060740), single top CSC note, tau ID
- b-tagging for LHC (physics/0702041)
- Electron ID in CMS
- More and more underway

Conclusion

- Decision trees have been around for some time in social sciences
- Natural extension to cut-based analysis
- Greatly improved performance with boosting (and also with bagging, random forests)
- Becoming rather fashionable in HEP
- Even so, expect a lot of scepticism: you'll have to convince people that your advanced technique leads to meaningful and reliable results ⇒ ensemble tests, use several techniques, compare to random grid search. etc.
- As with other advanced techniques, no point in using them if data are not understood and well modelled
- Even less point optimising MVA to death if you have no data...

Boosted decision tree software

- Historical: CART, ID3, C4.5
- D0 analysis: C++ custom-made code. Can use entropy/Gini, boosting/bagging/random forests
- MiniBoone code at http://www-mhp.physics.lsa.umich.edu/~roe/

Much better approach

- Go for a fully integrated solution
 - use different multivariate techniques easily
 - spend your time on understanding your data and model
- Examples:
 - Weka. Written in Java, open source, very good published manual. Not written for HEP but very complete http://www.cs.waikato.ac.nz/ml/weka/
 - StatPatternRecognition http://www.hep.caltech.edu/~narsky/spr.html
 - I would recommend TMVA (Toolkit for MultiVariate Analysis).
 Now integrated in ROOT, complete manual. Listen to Andreas tomorrow.
 http://tmva.sourceforge.net

References

- R.E. Schapire, "The strength of weak learnability", Machine Learning, 5(2):197-227,1990.
- Y. Freund, "Boosting a weak learning algorithm by majority", Information and computation. 121(2):256-285, 1995
- Y. Freund and R.E. Schapire, "Experiments with a New Boosting Algorithm" in Machine Learning: Proceedings of the Thirteenth International Conference, edited by L. Saitta (Morgan Kaufmann, San Fransisco, 1996) p. 148
- Y. Freund and R.E. Schapire, "A short introduction to boosting" Journal of Japanese Society for Artificial Intelligence, 14(5):771-780 (1999)
- B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Nucl. Instrum. Methods Phys. Res., Sect. A 543, 577 (2005); H.-J. Yang, B.P. Roe, and J. Zhu, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 370 (2005).
 - V. M. Abazov et al. [D0 Collaboration], "Evidence for production of single top quarks,", accepted by Phys.Rev.D, arXiv:0803.0739