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Before we go on...

!!! VERY IMPORTANT !!!

Understand your inputs well
before you start playing with multivariate techniques

Yann Coadou (CERN) — Decision trees SOS’08, IPHC Strasbourg, 3 July 2008 3/46



Introduction

Decision tree origin

Machine-learning technique, widely used in social sciences

L. Breiman et al., “Classification and Regression Trees” (1984)

Basic principle

Extend cut-based selection

many (most?) events do not have all characteristics of signal or
background (or we would not be attending SoS’08...)
try not to rule out events failing a particular criterion

Keep events rejected by one criterion and see whether other criteria
could help classify them properly

Binary trees

Trees can be built with branches splitting into many sub-branches

In this lecture: mostly binary trees
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Tree building algorithm

Start with all events = first (root) node

sort all events by each variable

for each variable, find splitting value with best separation between
two children

mostly signal in one child
mostly background in the other

select variable and splitting value with best separation, produce two
branches (nodes)

events failing criterion on one side
events passing it on the other

Keep splitting

Now have two new nodes. Repeat algorithm recursively on each node

Iterate until stop criterion is reached

Splitting stops: terminal node = leaf
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Decision tree output

Run event through tree

Start from root node

Apply first best cut

Go to left or right child node

Apply best cut for this node

...Keep going until...

Event ends up in leaf

DT Output

Purity ( s
s+b ) of leaf, close to 1 for signal and 0 for background

or binary answer (discriminant function +1 for signal, −1 for
background) based on purity above/below specified value (e.g. 1

2) in
leaf
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Algorithm example

Consider signal (si ) and background
(bj) events described by 3 variables: pT

of leading jet, top mass Mt and HT

(scalar sum of pT ’s of all objects in the
event)

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)
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Tree construction parameters

Normalization of signal and background before training

same total weight for signal and background events

Selection of splits

list of questions (variablei < cuti?)

goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

minimum leaf size (e.g. 100 events)

insufficient improvement from splitting

perfect classification (all events in leaf belong to same class)

Assignment of terminal node to a class

signal leaf if purity > 0.5, background otherwise
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Splitting a node

Impurity function i(t)

maximum for equal mix of
signal and background

symmetric in psignal and
pbackground

minimal for node with either signal
only or background only

strictly concave ⇒ reward purer
nodes (favours end cuts with one
smaller node and one larger node)

Optimal split

Decrease of impurity for split s of
node t into children tL and tR
(goodness of split):
∆i(s, t) = i(t)−pL · i(tL)−pR · i(tR)

Aim: find split s∗ such that:

∆i(s∗, t) = max
s∈{splits}

∆i(s, t)

Stop splitting

When not enough
improvement
(∆i(s∗, t) < β)

When not enough statistics

When node is pure signal or
pure background

Maximising ∆i(s, t) ≡ minimizing overall tree impurity
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Splitting a node: examples

Node purity

Signal (background) event i with weight w i
s (w i

b)

p =

∑
i∈signal w

i
s∑

i∈signal w
i
s +

∑
j∈bkg w j

b

(
remember D(x) =

s(x)

s(x) + b(x)

)

Signal purity (= purity) ps = p = s
s+b

Background purity pb = b
s+b = 1− ps = 1− p

Common impurity functions

misclassification error
= 1−max(p, 1− p)

(cross) entropy
= −

∑
i=s,b pi log pi

Gini index
signal purity
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Splitting a node: Gini index of diversity

Defined for many classes

Gini =
∑

i 6=j pipj

Interpretation

Assign random object to class i with probability pi .

Probability that it is actually in class j is pj

⇒ Gini = probability of misclassification

For two classes (signal and background)

i = s, b and ps = p = 1− pb

⇒ Gini = 1−
∑

i=s,b p2
i = 2p(1− p) = 2sb

(s+b)2

Most popular in DT implementations

Usually similar performance to e.g. entropy
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Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN log N with n variables and N training
events

Insensitive to duplicate variables (give same ordering ⇒ same DT)

Variable order does not matter: all variables treated equal

Irrelevant variables:

no discriminative power (e.g. age of analyst) ⇒ not used
only costs a little CPU time

Order of training events is irrelevant
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Variable selection II

Transforming input variables

Completely insensitive to the replacement of any subset of input
variables by (possibly different) arbitrary strictly monotone functions
of them:

let f : xi → f (xi ) be strictly monotone
if x > y then f (x) > f (y)
ordering of events by xi is the same as by f (xi )
⇒ produces the same DT

Examples:

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity to outliers
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Variable selection III

Linear combinations of input variables

Until now, answering questions like “is xi < ci?”

Instead, take set of coefficients a = (a1, .., an), ||a||2 =
∑

i a
2
i = 1

Question: “is
∑

i aixi < ci?”

Choose optimal split s∗(a∗) and set of linear coefficients a∗ that
maximises ∆i(s∗(a), t)

Tricky to implement, very CPU intensive

Variable ranking

Ranking of variable xi : add up decrease of impurity at each node
where xi is used

Largest decrease of impurity = best variable
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Variable selection IV

Shortcoming: masking of variables

xj may be just a little worse than xi but will never be picked

xj is ranked as irrelevant

But remove xi and xj becomes very relevant

Solution: surrogate split

Compare which events are sent left or right by optimal split and by
any other split

Give higher score to split that mimics better the optimal split

Highest score = surrogate split

Can be included in variable ranking

Helps in case of missing data: replace optimal split by surrogate
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Pruning a tree I

Why prune a tree?

Possible to get a perfect classifier on training events

Mathematically misclassification error can be made as little as wanted

E.g. tree with one class only per leaf (down to 1 event per leaf if
necessary)

Training error is zero

But run new independent events through tree (testing or validation
sample): misclassification is probably > 0, overtraining

Pruning: eliminate subtrees (branches) that seem too specific to
training sample:

a node and all its descendants turn into a leaf
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Pruning a tree II

Expected error pruning

Grow full tree

When result from children not significantly different from result of
parent, prune children

Can measure statistical error estimate with binomial error√
p(1− p)/N for node with purity p and N training events

No need for testing sample
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Pruning a tree III

Cost-complexity pruning

Idea: penalise “complex” trees (many nodes/leaves) and find
compromise between good fit to training data (larger tree) and good
generalisation properties (smaller tree)

With misclassification rate R(T ) of subtree T (with NT nodes) of
fully grown tree Tmax :

cost complexity Rα(T ) = R(T ) + αNT

α = complexity parameter

Minimise Rα(T ):

small α: pick Tmax

large α: keep root node only, Tmax fully pruned

First-pass pruning, for terminal nodes tL, tR from split of t:

by construction R(t) ≥ R(tL) + R(tR)
if R(t) = R(tL) + R(tR) prune off tL and tR
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Pruning a tree IV

Cost-complexity pruning

For node t and subtree Tt :

if t non-terminal, R(t) > R(Tt) by construction
Rα({t}) = Rα(t) = R(t) + α (NT = 1)
if Rα(Tt) < Rα(t) then branch has smaller cost-complexity than single
node and should be kept
at critical α = ρt , node is preferable
to find ρt , solve Rρt (Tt) = Rρt (t), or:

ρt =
R(t)− R(Tt)

NT − 1

node with smallest ρt is weakest link and gets pruned
apply recursively till you get to the root node

This generates sequence of decreasing cost-complexity subtrees

Compute their true misclassification rate on validation sample:

will first decrease with cost-complexity
then goes through a minimum and increases again
pick this tree at the minimum as the best pruned tree
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Tree (in)stability

Training sample composition

Small changes in sample can lead to very different tree structures

Performance on testing events may be as good, or not

Not optimal to understand data from DT rules

Doesn’t give confidence in result:

DT output distribution discrete by nature
granularity related to tree complexity
tendency to have spikes at certain purity values (or just two delta
functions at ±1 if not using purity)

Solution: averaging

Build several trees and average the output

V-fold cross-validation (good for small samples)

divide training sample L in V subsets of equal size: L =
⋃

v=1..V Lv

Train tree Tv on L − Lv , test on Lv

DT output = 1
V

∑
v=1..V Tv

Bagging, boosting, random forests, etc.

Yann Coadou (CERN) — Decision trees SOS’08, IPHC Strasbourg, 3 July 2008 21/46



Tree (in)stability

Training sample composition

Small changes in sample can lead to very different tree structures

Performance on testing events may be as good, or not

Not optimal to understand data from DT rules

Doesn’t give confidence in result:

DT output distribution discrete by nature
granularity related to tree complexity
tendency to have spikes at certain purity values (or just two delta
functions at ±1 if not using purity)

Solution: averaging

Build several trees and average the output

V-fold cross-validation (good for small samples)

divide training sample L in V subsets of equal size: L =
⋃

v=1..V Lv

Train tree Tv on L − Lv , test on Lv

DT output = 1
V

∑
v=1..V Tv

Bagging, boosting, random forests, etc.

Yann Coadou (CERN) — Decision trees SOS’08, IPHC Strasbourg, 3 July 2008 21/46



Decision tree score card

Training is fast
Human readable (not a black box)

Deals with continuous and discrete variables simultaneously
No need to transform inputs
Resistant to irrelevant variables
Works well with many variables

Good variables can be masked

Very few parameters
For some time still “original” in HEP

Unstable tree structure

Piecewise nature of output
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A brief history of boosting

First provable algorithm by Schapire (1990)

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

Recently in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID (2005)

D0 claimed first evidence for single top quark production (2006)

CDF copied (2008)
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Principles of boosting

What is boosting?

General method, not limited to decision trees

Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

Goal: combine such weak classifiers into a new more stable one, with
smaller error

Algorithm

Training sample Tk of N
events. For i th event:

weight wk
i

vector of discriminative
variables xi

class label yi = +1 for
signal, −1 for
background

Pseudocode:

Initialise T1

for k in 1..Ntree

train classifier Tk on Tk

assign weight αk to Tk

modify Tk into Tk+1

Boosted output: F (T1, ..,TNtree )
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AdaBoost

What is AdaBoost?

Introduced by Freund&Schapire in 1996

Stands for adaptive boosting

Learning procedure adjusts to training data to classify it better

Many variations on the same theme for actual implementation

Most common boosting algorithm around

Usually leads to better results than without boosting
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AdaBoost algorithm

Check which events of training sample Tk are misclassified by Tk :

I(X ) = 1 if X is true, 0 otherwise
for DT output in {±1}: isMisclassifiedk(i) = I

(
yi × Tk(xi ) ≤ 0

)
or isMisclassifiedk(i) = I

(
yi × (Tk(xi )− 0.5) ≤ 0

)
in purity convention

misclassification rate:

R(Tk) = εk =

∑N
i=1 wk

i × isMisclassifiedk(i)∑N
i=1 wk

i

Derive tree weight αk = β × ln((1− εk)/εk)

Increase weight of misclassified events in Tk to create Tk+1:

wk
i → wk+1

i = wk
i × eαk

Train Tk+1 on Tk+1

Boosted result of event i :
T (i) =

Ntree∑
k=1

αkTk(i)
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From tree to forest

⇒
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AdaBoost by example

Assume β = 1

Not-so-good classifier

Assume error rate ε = 40%

Then α = ln 1−0.4
0.4 = 0.4

Misclassified events get their weight multiplied by e0.4=1.5

⇒ next tree will have to work a bit harder on these events

Good classifier

Error rate ε = 5%

Then α = ln 1−0.05
0.05 = 2.9

Misclassified events get their weight multiplied by e2.9=19 (!!)

⇒ being failed by a good classifier means a big penalty:

must be a difficult case
next tree will have to pay much more attention to this event and try to
get it right

Yann Coadou (CERN) — Decision trees SOS’08, IPHC Strasbourg, 3 July 2008 29/46



AdaBoost error rate

Misclassification rate ε on training sample

Can be shown to be bound:
ε ≤

Ntree∏
k=1

2
√

εk(1− εk)

If each tree has εk 6= 0.5 (i.e. better than random guessing):

the error rate falls to zero for sufficiently large Ntree

Corollary: training data is over fitted

Overtraining?

Error rate on test sample may reach a minimum and then potentially
rise. Stop boosting at the minimum.

In principle AdaBoost must overfit training sample

In many cases in literature, no loss of performance due to overtraining

may have to do with fact that successive trees get in general smaller
and smaller weights
trees that lead to overtraining contribute very little to final DT output
on validation sample
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Training and generalisation error
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Concrete examples I

Using TMVA and some code modified from G. Cowan’s CERN
academic lectures (June 2008)
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Concrete examples II
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Concrete examples III
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Concrete examples IV
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Concrete examples V
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Concrete example: XOR
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Concrete example: XOR
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Concrete example: XOR with 100 events
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Other boosting algorithms

ε-Boost (shrinkage)

reweight misclassified events by a fixed e2ε factor

T (i) =
∑Ntree

k=1 εTk(i)

ε-LogitBoost

reweight misclassified events by logistic function e−yi Tk (xi )

1+e−yi Tk (xi )

T (i) =
∑Ntree

k=1 εTk(i)

Real AdaBoost

DT output is Tk(i) = 0.5× ln pk (i)
1−pk (i) where pk(i) is purity of leaf on

which event i falls

reweight events by e−yiTk (i)

T (i) =
∑Ntree

k=1 Tk(i)

ε-HingeBoost, LogitBoost, Gentle AdaBoost, etc.
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Other averaging techniques

Bagging

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Random forests

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Trimming

Not exactly the same. Used to speed up training

After some boosting, very few high weight events may contribute

⇒ ignore events with too small a weight
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Single top production evidence at D0 (2006)

Three multivariate techniques:
BDT, Matrix Elements, BNN

Most sensitive: BDT

σs+t = 4.9 ± 1.4 pb
p-value = 0.035% (3.4σ)

SM compatibility: 11% (1.3σ)

σs = 1.0± 0.9 pb
σt = 4.2+1.8

−1.4 pb
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Comparison for D0 single top evidence

ayesian NN, ME 

Cannot know a priori which method will
work best

⇒ Need to experiment with different
techniques
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Boosted decision trees in HEP studies

MiniBooNE (e.g. physics/0408124 NIM A543:577-584,
physics/0508045 NIM A555:370-385, hep-ex/0704.1500)

D0 single top evidence (arXiv:0803.0739v1 accepted by PRD,
PRL98:181802,2007)

GLAST (same code as D0)

BaBar (hep-ex/0607112)

ATLAS: diboson analyses, SUSY analysis (hep-ph/0605106
JHEP060740), single top CSC note, tau ID

b-tagging for LHC (physics/0702041)

Electron ID in CMS

More and more underway
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Conclusion

Decision trees have been around for some time in social sciences

Natural extension to cut-based analysis

Greatly improved performance with boosting (and also with bagging,
random forests)

Becoming rather fashionable in HEP

Even so, expect a lot of scepticism: you’ll have to convince people
that your advanced technique leads to meaningful and reliable results
⇒ ensemble tests, use several techniques, compare to random grid
search, etc.

As with other advanced techniques, no point in using them if data are
not understood and well modelled

Even less point optimising MVA to death if you have no data...
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Boosted decision tree software

Historical: CART, ID3, C4.5

D0 analysis: C++ custom-made code. Can use entropy/Gini,
boosting/bagging/random forests

MiniBoone code at http://www-mhp.physics.lsa.umich.edu/∼roe/

Much better approach

Go for a fully integrated solution

use different multivariate techniques easily
spend your time on understanding your data and model

Examples:

Weka. Written in Java, open source, very good published manual. Not
written for HEP but very complete
http://www.cs.waikato.ac.nz/ml/weka/
StatPatternRecognition
http://www.hep.caltech.edu/∼narsky/spr.html
I would recommend TMVA (Toolkit for MultiVariate Analysis).
Now integrated in ROOT, complete manual. Listen to Andreas
tomorrow. http://tmva.sourceforge.net
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