

Multivariate Discriminants II

Harrison B. Prosper Florida State University

School Of Statistics

Insitut Pluridisciplinaire Hubert Curien, Strasbourg 30 June 2008 - 04 July 2008

Outline

- Introduction
- Support Vector Machines
- Naïve Bayes
- Kernel Density Estimation
- Bayesian Neural Networks
- Issues
- Summary

Introduction

The goal is to approximate the function D(x)

$$D(x) = \frac{s(x)}{s(x) + b(x)}$$

where

$$d(x) = \varepsilon s(x) + (1 - \varepsilon) b(x)$$

$$\varepsilon = k/(1+k)$$

$$k = p(S)/p(B)$$

signal density
background density
data density
signal fraction
signal/background ratio

Introduction

The function D(x) is useful for

Classification

- $D(x) > D_0$
- Signal extraction w(x) = p(S|x) = D/[D+(1-D)/k]
- Data compression
- $R^d \rightarrow [0,1] (x \rightarrow D)$

Generalization of the Fisher discriminant (Boser, Guyon and Vapnik, 1992).

Basic Idea

Data that are non-separable in d-dimensions may be better separated if mapped into a space of higher dimension, H

$$h: \mathbb{R}^d \to \mathbb{R}^H$$

Use a hyper-plane to partition the high dimensional space

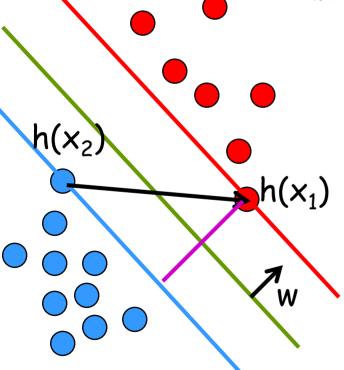
$$f(x) = w \cdot h(x) + b$$

Consider separable data in the high dimensional space

green plane: w.h(x) + b = 0

red plane: $w.h(x_1)+b=+1$

blue plane: $w.h(x_2)+b=-1$



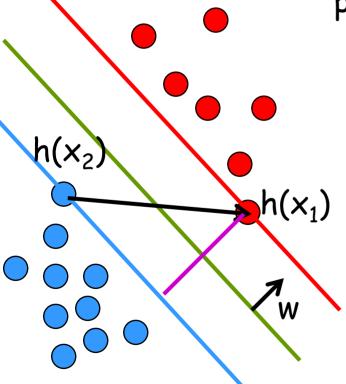
subtract blue from red

$$w.[h(x_1)-h(x_2)] = 2$$

and normalize the vector w

$$\hat{w}.[h(x_1)-h(x_2)] = 2/||w||$$

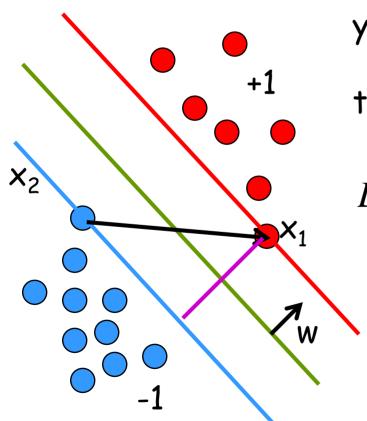
The quantity $m = \hat{w}.[h(x_1)-h(x_2)]$, the distance between the red and blue planes, is called the margin. The best separation occurs when the margin is as large as possible.



Note: because m ~ 1/||w||, maximizing the margin is equivalent to minimizing

||w||²

Label the red dots y = +1 and the blue dots y = -1. The task is to minimize $||w||^2$ subject to the constraints



$$y_i [w.h(x_i) + b] \ge 1$$
, $i = 1 ... N$,

that is, to minimize the function

$$L(w,b,\alpha) = \frac{1}{2} \|w\|^2$$
$$-\sum_{i=1}^{N} \alpha_i \left[y_i \left(w \cdot h(x_i) + b \right) - 1 \right]$$

where the $\alpha > 0$ are Lagrange multipliers

When $L(w,b,\alpha)$ is minimized with respect to w and b, the Lagrangian $L(w,b,\alpha)$ can be transformed to the form

$$E(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j h(x_i) \cdot h(x_j)$$

At the minimum of $E(\alpha)$, the only non-zero coefficients α are those corresponding to points on the red and blue planes: that is, the support vectors.

In general, data are not separable and the constraints have to be relaxed, for example,

$$y_{i}.(w.x_{i} + b) \ge 1 - \xi_{i}$$

by introducing so-called slack variables ξ_i .

Important: Because of the scalar product structure one can use kernels $K(x_i, x_j) = h(x_i).h(x_j)$ to perform simultaneously the mapping to high dimensions and the scalar product *efficiently*, even in a space of infinite dimensions!

$$E(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} [h(x_{i}) \cdot h(x_{j})]$$

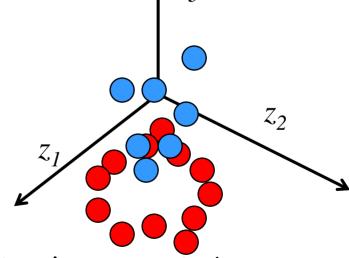
$SVM - h:R^2 -> R^3$

Example

$$h: (x_1, x_2) \to (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

$$h(x) \cdot h(y) = (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \cdot (y_1^2, \sqrt{2}y_1 y_2, y_2^2)$$
$$= (x \cdot y)^2$$
$$= k(x, y)$$





Since we do not know which mapping h: $x \rightarrow z$ is best for a given problem, we must try different kernels.

Naïve Bayes

Naïve Bayes

The method is very simple: ignore the dependencies between variables and approximate the density p(x) by

$$\hat{p}(x) = \prod_{i=1}^{d} q(x_i)$$

where $q(x_i)$ are the 1-D marginal densities of p(x)

$$q(x_i) = \int_{\{x_j: x_j \neq x_i\}} p(x) dx$$

Naïve Bayes

The naïve Bayes estimate of D(x) is then given by

$$D(x) = \frac{\hat{s}(x)}{\hat{s}(x) + \hat{b}(x)}$$

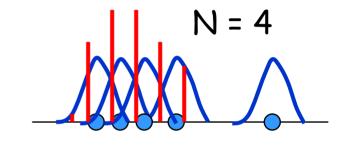
In spite of its name, this method can often yield good results.

It should be tried, because it is easy to compute and the 1-d densities can be approximated with kernel density estimation (KDE), which is the next topic

Basic Idea

Parzen Estimation (1960s)

$$\hat{p}(x) = \frac{1}{N} \sum_{n=1}^{N} K\left(\frac{x - z_n}{h}\right)$$



Mixtures

$$\hat{p}(x) = \sum_{i} w_{i} \varphi_{j}(x) \qquad j << N$$

Why does it work? In the limit $N \rightarrow \infty$

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K\left(\frac{x - z_n}{h}\right) \to \int K\left(\frac{x - z}{h}\right) p(z) dz$$

the true density p(x) will be recovered because

$$K\left(\frac{x-z_n}{h}\right) \to \delta^d(x-z), \quad N \to \infty$$

The KDE is therefore a consistent estimator of the probability density p(x)

In principle, so long as the kernel -> δ -function in the N -> ∞ limit *any* kernel will do.

In practice, the most commonly used kernel is the product of 1-D Gaussians, one for each dimension

$$K(||x-z||) = \exp \left[-\sum_{i=1}^{d} \left(\frac{x-z_i}{h_i}\right)^2/2\right]/h_i(2\pi)^{d/2}$$

The hi are called the bandwidths

One advantage of a KDE is that the number of adjustable parameters can be made small

Indeed, if the same bandwidth h is used for all dimensions, then there will be only a *single* adjustable parameter

$$K(||x-z||) = \exp\left[-\sum_{i=1}^{d} \left(\frac{x-z_i}{h}\right)^2/2\right]/h^d (2\pi)^{d/2}$$

The optimal bandwidths are those yielding the best kernel density estimate of p(x). In principle, this can be found by minimizing the risk function

$$R(\hat{p}, p) = \int [\hat{p}(x) - p(x)]^2 dx$$

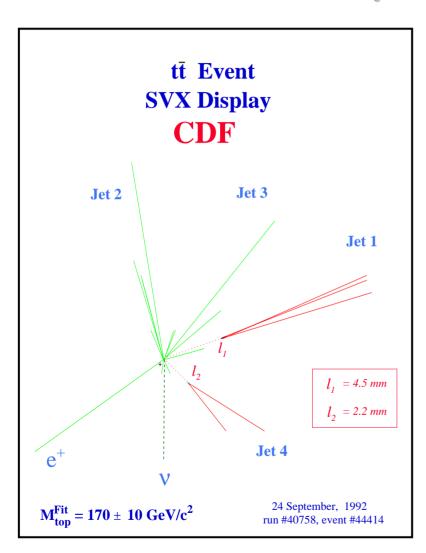
In practice, one minimizes some approximation of it. For d = 1, the (approximate) optimal bandwidth is given by

$$\hat{h} = \left(\frac{m_2}{k_2 p_2 N}\right)^{1/5} \text{ where}$$

$$m_2 = \int x^2 K(x) dx$$

$$k_2 = \int K(x)^2 dx$$

$$p_2 = \int p''(x)^2 dx$$

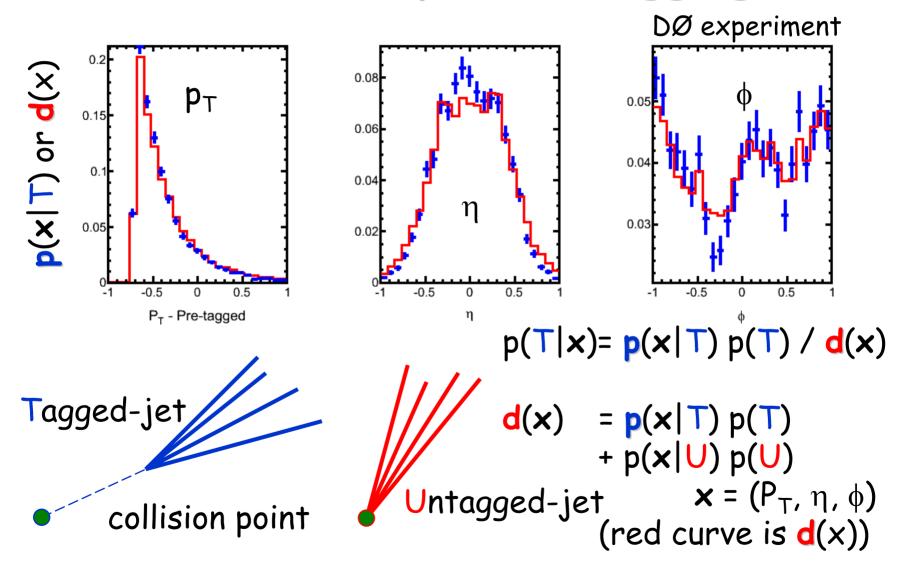


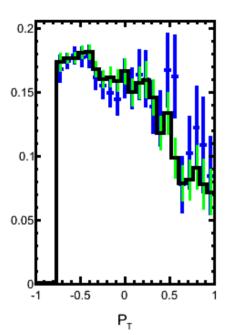
Two varieties of jet:

- 1. Tagged (Jet 1, Jet 4)
- 2. Untagged (Jet 2, Jet 3)

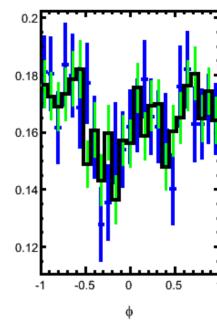
We are often interested in

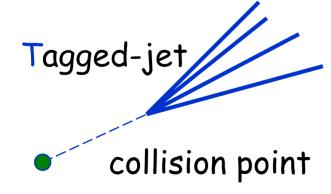
Pr(Tagged|Jet Variables)





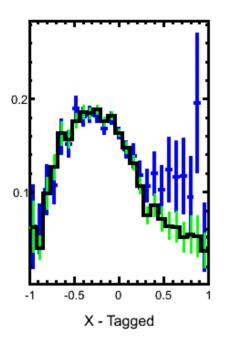


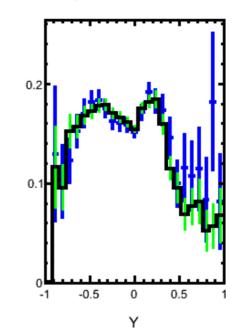


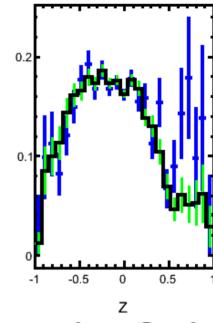


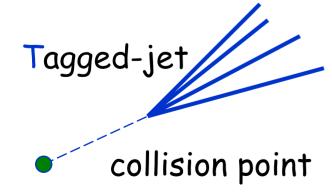
Projections of KDE of p(T|x) (black curve) onto the P_T , η and φ axes. Blue points: ratio of blue to red histograms (see previous slide)

Untagged-jet



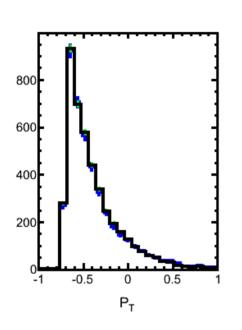


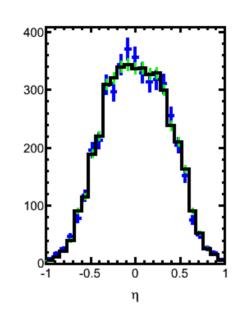


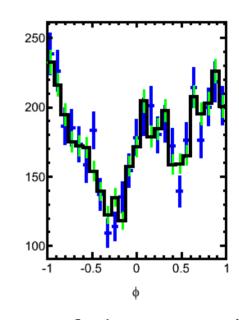


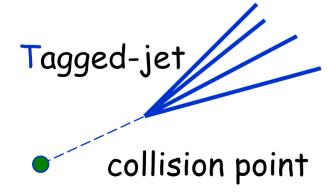
Projections of KDE of p(T|x) onto 3 randomly chosen rays through the origin.

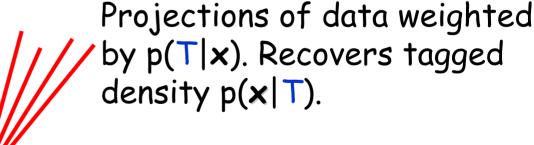
Untagged-jet



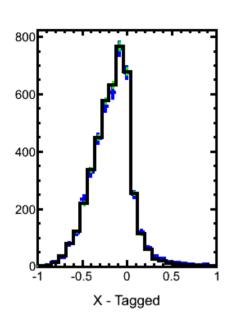


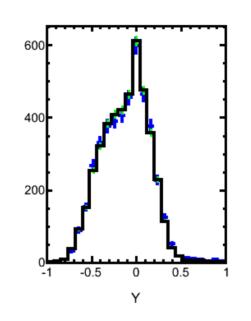




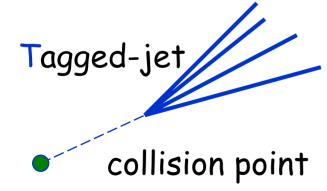


Untagged-jet









Projections of weighted data onto the 3 randomly selected rays through the origin Untagged-jet

Practical Issues

- The choice of bandwidth parameters is crucial.
- In regions where the density of points is low, the kernels will tend to be too far apart.
- A sharp boundary is difficult to model.
- Every evaluation of the KDE requires the evaluation of N, d-dimensional, kernels. If N is large this requires a lot of computation.

Given

D = y, x

$$x = \{x_1,...x_N\}, y = \{y_1,...y_N\}$$

of N training examples and the likelihood function
 $p(y|x, w)$

Find

a function n(x) that approximates D(x)

For classification, (one form of) the likelihood for the training data is

$$p(y|x, w) = \Pi_i n(x_i, w)^y [1 - n(x_i, w)]^{1-y}$$

where
$$y = 0$$
 for background events $y = 1$ for signal events

Procedure: Compute
$$p(w|D) = p(y|x,w) p(w) / const.$$

using functions of the form

$$n(x, w) = 1/[1+exp(-f(x, w))]$$

from a very large function class and estimate D(x) using

$$D(x) \approx n(x) = \int n(x, w) p(w|D) dw$$

The function n(x) is a Bayesian neural network (BNN)

Questions:

- 1. Do sufficiently flexible functions f(x, w) exist?
- 2. Is there a practical way to do the integral?

Answer 1: Yes!

Hilbert's 13th problem:

Prove that, in general, the following is impossible $f(x_1,...,x_n) = F(g_1(x_1),...,g_n(x_n))$

In 1957, Kolmogorov proved the contrary: A function $f:R^n \to R$ can be represented as follows $f(x_1,...,x_n) = \sum_{i=1}^{2n+1} Q_i(\sum_{j=1}^n G_{ij}(x_j))$ where G_{ij} are independent of f(.)

See Scwindling's talk this afternoon for examples of such functions

Answer 2: Yes!

Computational Method

Generate a sample of N points $\{w\}$ from the density p(w|D), and average over the last M of them.

Do this using methods of statistical mechanics. Generate "states" (p, w) with probability $\sim \exp(-\beta H)$,

where the "Hamiltonian", H, is H = T + V,

with $T(p) = p^2$ and $V(w) = \ln p(w|D)$

Example 1

Software

Flexible Bayesian Modeling, Radford Neal http://www.cs.utoronto.ca/~radford/fbm.software.html

Example 1: 1-D

Signal

p+pbar -> t q b

Background

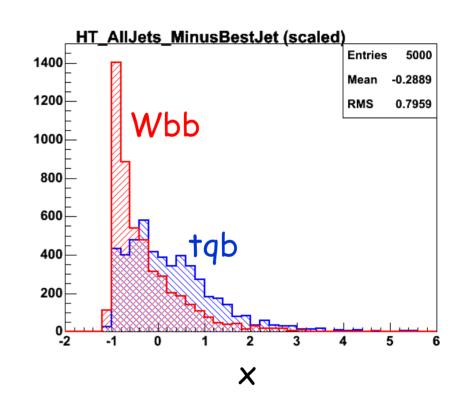
p+pbar -> W b b

Function class

• (1, 15, 1)

MCMC

- 500 tqb + Wbb events
- Use last 20 points in a chain of 10,000, skipping every 20th



Example 1: 1-D

Dots

$$p(S|x) = H_S/(H_S+H_B)$$

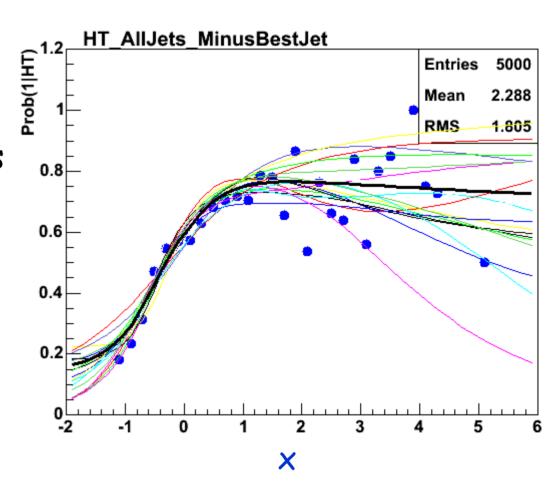
 H_S , H_B , 1-D histograms

Curves

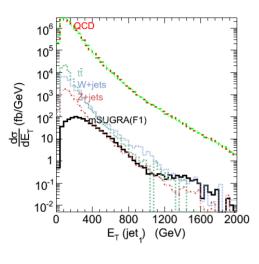
Individual functions $n(x, \mathbf{w_k})$

Black curve

$$n(x) = E_w[n(x, w)]$$

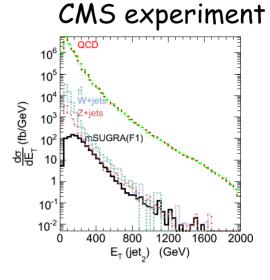


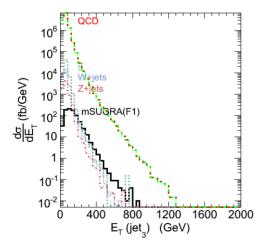
Example 2



Transverse momentum spectra

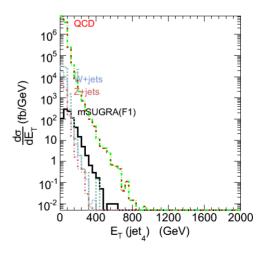
SUSY signal: black curve





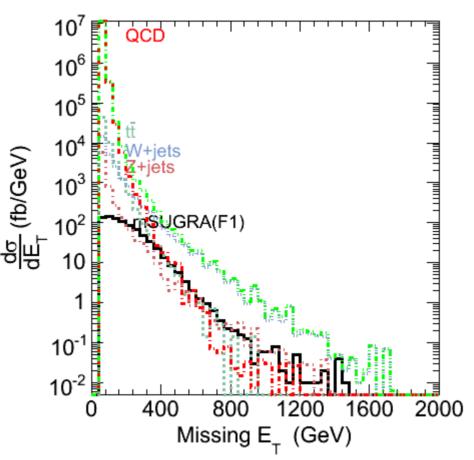
Signal:Noise

1:25000



Missing transverse momentum spectrum

(caused by escape of neutrinos and SUSY particles)



Variables, x:

$$4 \times (E_T, \eta, \phi)$$

+
$$(E_T, \phi)$$

$$\dim(x) = 14$$

Signal

250 p+p -> gluino, gluino (mSUGRA) events

Background

250 p+p -> top, anti-top events

Function class

(14, 40, 1) $(dim(w) = 641) !!! \otimes$

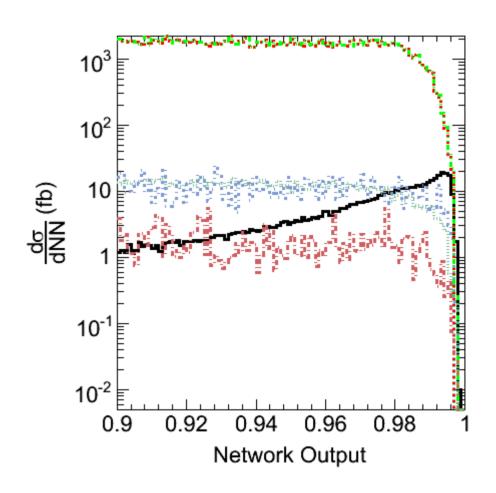
MCMC

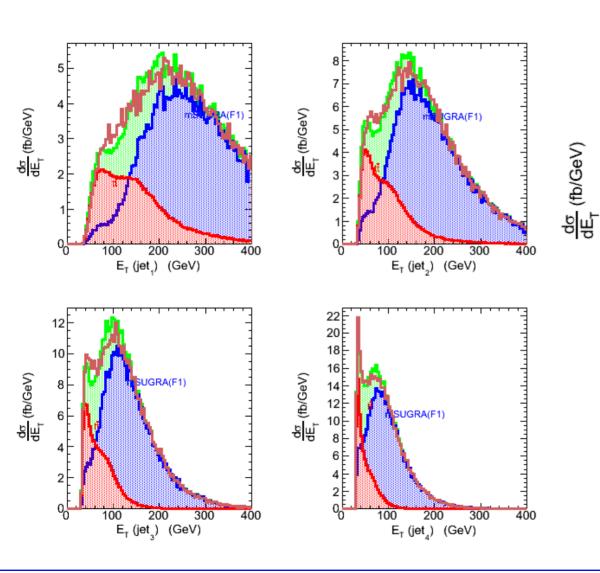
Use last 100 points (that is, networks) in a Markov chain of 10,000, skipping every 20.

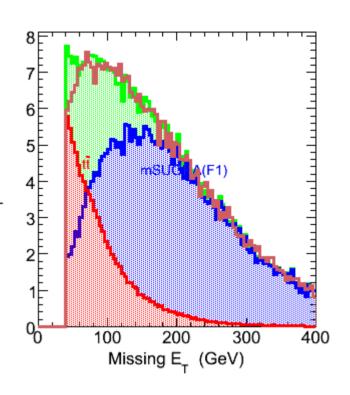
Distribution beyond n(x) > 0.9

Assuming L = 10 fb⁻¹

Cut	5	В	S/JE
0.90	5×10^3	2x10 ⁶	3.5
0.95	4×10^3	7×10^5	4.7
0.99	1×10 ³	2×10 ⁴	7.0







Verification plots

ça marche! ©

Issues

- How should one choose the function class?
- How should one verify that a d-dimensional density is well-modeled?
- How should one take into account model uncertainty?
- How should one compute data compression efficiency?
 - efficiency = Info(after compression)/Info(before)

Summary

- The function D(x) = s(x) / [s(x) + b(x)] can be applied to many aspects of data analysis
- Moreover, many practical methods, and tools, are available to approximate it
- However, no one method is guaranteed to give the best approximation in all circumstances. So it is good to experiment with a few of them using tools such as TMVA or StatPatternRecognition