Multivariate Discriminants

II

Harrison B. Prosper

Florida State University

School Of Statistics

Insitut Pluridisciplinaire Hubert Curien, Strasbourg 30 June 2008-04 July 2008

Outline

- Introduction
- Support Vector Machines
- Naïve Bayes
- Kernel Density Estimation
- Bayesian Neural Networks
- Issues
- Summary

Introduction

The goal is to approximate the function $D(x)$

$$
D(x)=\frac{s(x)}{s(x)+b(x)}
$$

where

$$
\begin{aligned}
& s(x) \\
& b(x) \\
& d(x)=\varepsilon s(x)+(1-\varepsilon) b(x) \\
& \varepsilon=k /(1+k) \\
& k=p(S) / p(B)
\end{aligned}
$$

signal density background density data density signal fraction signal/background ratio

Introduction

The function $D(x)$ is useful for

- Classification $D(x)>D_{0}$
- Signal extraction

$$
w(x)=p(S \mid x)=D /[D+(1-D) / k]
$$

- Data compression $R^{d} \rightarrow[0,1] \quad(x \rightarrow D)$

Support Vector Machines

Support Vector Machines

Generalization of the Fisher discriminant (Boser, Guyon and Vapnik, 1992).

Basic Idea

Data that are non-separable in d-dimensions may be better separated if mapped into a space of higher dimension, H

$$
h: R^{d} \rightarrow R^{H}
$$

Use a hyper-plane to partition the high dimensional space

$$
f(x)=w \cdot h(x)+b
$$

Support Vector Machines

Consider separable data in the high dimensional space green plane: red plane:
blue plane:

$$
\begin{aligned}
& \text { w.h }(x)+b=0 \\
& \text { w.h }\left(x_{1}\right)+b=+1 \\
& \text { w.h }\left(x_{2}\right)+b=-1
\end{aligned}
$$

subtract blue from red

$$
w \cdot\left[h\left(x_{1}\right)-h\left(x_{2}\right)\right]=2
$$

and normalize the vector w

$$
\hat{w} \cdot\left[h\left(x_{1}\right)-h\left(x_{2}\right)\right]=2 /\|w\|
$$

Support Vector Machines

The quantity $m=\hat{w} .\left[h\left(x_{1}\right)-h\left(x_{2}\right)\right]$, the distance between the red and blue planes, is called the margin. The best separation occurs when the margin is as large as possible.

> Note: because $m \sim 1 /\|w\|$, maximizing the margin is equivalent to minimizing

$$
\|w\|^{2}
$$

Support Vector Machines

Label the red dots $y=+1$ and the blue dots $y=-1$. The task is to minimize $\|w\|^{2}$ subject to the constraints

$$
y_{i}\left[w . h\left(x_{i}\right)+b\right] \geq 1, \quad i=1 \ldots N,
$$

that is, to minimize the function

$$
L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}
$$

$$
-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(w \cdot h\left(x_{i}\right)+b\right)-1\right]
$$

where the $\alpha>0$ are Lagrange multipliers

Support Vector Machines

When $L(w, b, \alpha)$ is minimized with respect to w and b, the Lagrangian $L(w, b, \alpha)$ can be transformed to the form

$$
E(\alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} h\left(x_{i}\right) \cdot h\left(x_{j}\right)
$$

At the minimum of $E(\alpha)$, the only non-zero coefficients α are those corresponding to points on the red and blue planes: that is, the support vectors.

Support Vector Machines

In general, data are not separable and the constraints have to be relaxed, for example,

$$
y_{i} \cdot\left(w \cdot x_{i}+b\right) \geq 1-\xi_{i}
$$

by introducing so-called slack variables ξ_{i}.
Important: Because of the scalar product structure one can use kernels $K\left(x_{i}, x_{j}\right)=h\left(x_{i}\right) . h\left(x_{j}\right)$ to perform simultaneously the mapping to high dimensions and the scalar product efficiently, even in a space of infinite dimensions!

$$
E(\alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left[h\left(x_{i}\right) \cdot h\left(x_{j}\right)\right]
$$

$S V M-h: R^{2} \rightarrow R^{3}$

Example

$$
h:\left(x_{1}, x_{2}\right) \rightarrow\left(z_{1}, z_{2}, z_{3}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

$$
h(x) \cdot h(y)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \cdot\left(y_{1}^{2}, \sqrt{2} y_{1} y_{2}, y_{2}^{2}\right)
$$

$$
=(x \cdot y)^{2}
$$

$$
=k(x, y)
$$

Since we do not know which mapping $h: x->z$ is best for a given problem, we must try different kernels.

Naïve Bayes

Naïve Bayes

The method is very simple: ignore the dependencies between variables and approximate the density $p(x)$ by

$$
\hat{p}(x)=\prod_{i=1}^{d} q\left(x_{i}\right)
$$

where $q\left(x_{i}\right)$ are the 1-D marginal densities of $p(x)$

$$
q\left(x_{i}\right)=\int_{\left\{x_{j}: x_{j} \neq x_{i}\right\}} p(x) d x
$$

Naïve Bayes

The naïve Bayes estimate of $D(x)$ is then given by

$$
D(x)=\frac{\hat{s}(x)}{\hat{s}(x)+\hat{b}(x)}
$$

In spite of its name, this method can often yield good results.

It should be tried, because it is easy to compute and the 1-d densities can be approximated with kernel density estimation (KDE), which is the next topic
seos 08

Kernel Density Estimation

8 cces io

Kernel Density Estimation

Basic Idea

Parzen Estimation (1960s)

$$
\hat{p}(x)=\frac{1}{N} \sum_{n=1}^{N} K\left(\frac{x-z_{n}}{h}\right)
$$

Mixtures

$$
\hat{p}(x)=\sum_{j} w_{j} \varphi_{j}(x) \quad j \ll N
$$

Kernel Density Estimation

Why does it work? In the limit $N \rightarrow \infty$

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} K\left(\frac{x-z_{n}}{h}\right) \rightarrow \int K\left(\frac{x-z}{h}\right) p(z) d z
$$

the true density $p(x)$ will be recovered because

$$
K\left(\frac{x-z_{n}}{h}\right) \rightarrow \delta^{d}(x-z), \quad N \rightarrow \infty
$$

The KDE is therefore a consistent estimator of the probability density $p(x)$

Kernel Density Estimation

In principle, so long as the kernel $->\delta$-function in the $\mathrm{N} \rightarrow \infty$ limit any kernel will do.

In practice, the most commonly used kernel is the product of 1-D Gaussians, one for each dimension

$$
K(\|x-z\|)=\exp \left[-\sum_{i=1}^{d}\left(\frac{x-z_{i}}{h_{i}}\right)^{2} / 2\right] / h_{i}(2 \pi)^{d / 2}
$$

The h_{i} are called the bandwidths

Kernel Density Estimation

One advantage of a KDE is that the number of adjustable parameters can be made small

Indeed, if the same bandwidth h is used for all dimensions, then there will be only a single adjustable parameter

$$
K(\|x-z\|)=\exp \left[-\sum_{i=1}^{d}\left(\frac{x-z_{i}}{h}\right)^{2} / 2\right] / h^{d}(2 \pi)^{d / 2}
$$

Kernel Density Estimation

The optimal bandwidths are those yielding the best kernel density estimate of $p(x)$. In principle, this can be found by minimizing the risk function

$$
R(\hat{p}, p)=\int[\hat{p}(x)-p(x)]^{2} d x
$$

In practice, one minimizes some approximation of it. For $\mathrm{d}=1$, the (approximate) optimal bandwidth is given by

$$
\hat{h}=\left(\frac{m_{2}}{k_{2} p_{2} N}\right)^{1 / 5} \text { where } \quad \begin{aligned}
& m_{2}=\int x^{2} K(x) d x \\
& k_{2}=\int K(x)^{2} d x \\
& p_{2}=\int p^{\prime \prime}(x)^{2} d x
\end{aligned}
$$

KDE Example: b-Tagging

Two varieties of jet:

1. Tagged (Jet 1, Jet 4)
2. Untagged (Jet 2, Jet 3)

We are often interested in

Pr(Tagged|Jet Variables)

scers 08

KDE Example: b-Tagging

Tagged-jet
collision point

DØ experiment

$$
p(T \mid x)=p(x \mid T) p(T) / d(x)
$$

$$
\begin{aligned}
d(x) & =p(x \mid T) p(T) \\
& +p(x \mid U) p(U)
\end{aligned}
$$

$$
x=\left(P_{T}, \eta, \phi\right)
$$

(red curve is $d(x)$)

Projections of KDE of $p(T \mid x)$ (black curve) onto the P_{T}, η and ϕ axes. Blue points: ratio of blue to red histograms (see previous slide)

$$
\begin{aligned}
& \| / \begin{array}{c}
\text { (black cl } \\
\mathrm{P}_{\mathrm{T}, 7} \eta \text { and } \\
\text { ratio of }
\end{array} \\
& \text { Untagged-jet }
\end{aligned}
$$

KDE Example: b-Tagging

Tagged-jet

collision point

KDE Example: b-Tagging

Tagged-jet
collision point

Projections of KDE of $p(T \mid x)$ onto 3 randomly chosen rays through the origin.

Untagged-jet

KDE Example: b-Tagging

Projections of data weighted by $p(T \mid x)$. Recovers tagged density $\mathrm{p}(\mathrm{x} \mid \mathrm{T})$.
collision point

KDE Example: b-Tagging

Tagged-jet
collision point

Projections of weighted data onto the 3 randomly selected rays through the origin

Kernel Density Estimation

Practical Issues

- The choice of bandwidth parameters is crucial.
- In regions where the density of points is low, the kernels will tend to be too far apart.
- A sharp boundary is difficult to model.
- Every evaluation of the KDE requires the evaluation of N, d-dimensional, kernels. If N is large this requires a lot of computation.

Bayesian Neural Networks

Bayesian Neural Networks

Given

$$
\begin{aligned}
& D=y, x \\
& \quad x=\left\{x_{1}, \ldots x_{N}\right\}, y=\left\{y_{1}, \ldots y_{N}\right\} \\
& \text { of } N \text { training examples and the likelihood function } \\
& p(y \mid x, w)
\end{aligned}
$$

Find
a function $n(x)$ that approximates $D(x)$

Bayesian Neural Networks

For classification, (one form of) the likelihood for the training data is

$$
p(y \mid x, w)=\Pi_{i} n\left(x_{i}, w\right)^{y}\left[1-n\left(x_{i}, w\right)\right]^{1-y}
$$

where $\quad y=0$ for background events
$y=1$ for signal events

Bayesian Neural Networks

Procedure: Compute

$$
p(w \mid D)=p(y \mid x, w) p(w) / \text { const. }
$$

using functions of the form

$$
n(x, w)=1 /[1+\exp (-f(x, w))]
$$

from a very large function class and estimate $D(x)$ using

$$
D(x) \approx n(x)=\int n(x, w) p(w \mid D) d w
$$

The function $n(x)$ is a Bayesian neural network (BNN)

Bayesian Neural Networks

Questions:

1. Do sufficiently flexible functions $f(x, w)$ exist?
2. Is there a practical way to do the integral?

Answer 1: Yes!

Hilbert's $13^{\text {th }}$ problem:
Prove that, in general, the following is impossible $f\left(x_{1}, \ldots, x_{n}\right)=F\left(g_{1}\left(x_{1}\right), \ldots, g_{n}\left(x_{n}\right)\right)$

In 1957, Kolmogorov proved the contrary: A function $f: R^{n} \rightarrow R$ can be represented as follows

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{2 n+1} Q_{i}\left(\sum_{j=1}^{n} G_{i j}\left(x_{j}\right)\right)
$$ where $G_{i j}$ are independent of $f($.

See Scwindling's talk this afternoon for examples of such functions

Answer 2: Yes!

Computational Method

Generate a sample of N points $\{w\}$ from the density $p(w \mid D)$, and average over the last M of them.

Do this using methods of statistical mechanics. Generate "states" (p, w) with probability

$$
\sim \exp (-\beta H),
$$

where the "Hamiltonian", H, is

$$
H=T+V,
$$

with $T(p)=p^{2}$ and $V(w)=\ln p(w \mid D)$

Example 1

Software
Flexible Bayesian Modeling, Radford Neal http://www.cs.utoronto.ca/~radford/fbm.software.html

Example 1: 1-D

Signal

- p+pbar -> $+q$ b

Background

- p+pbar \rightarrow W b b

Function class

- $(1,15,1)$

MCMC

- 500 tqb + Wbb events
- Use last 20 points in a chain of 10,000 , skipping every $20^{\text {th }}$

Example 1: 1-D

Dots

$$
p(S \mid x)=H_{S} /\left(H_{S}+H_{B}\right)
$$

H_{S}, H_{B} 1-D histograms

Curves

Individual functions $n\left(x, w_{k}\right)$

Black curve

$$
n(x)=E_{w}[n(x, w)]
$$

P促
Example 2
\qquad

（N）
N08
N08
N08

P10

N08
N08
（N）
SOP＇08
Examppe
Exale

Nu）
Su8
P10
N08
Nu）
Exas＇08
Nu）
N08
N08
N08
．

都

Example 2: 14-D

CMS experiment

Transverse momentum spectra

SUSY signal: black curve

Signal:Noise
1:25000

Example 2: 14-D

Example 2: 14-D

Signal
250 p+p -> gluino, gluino (mSUGRA) events
Background
250 p+p -> top, anti-top events
Function class
$(14,40,1) \quad(\operatorname{dim}(w)=641)!!!+$
MCMC
Use last 100 points (that is, networks) in a Markov chain of 10,000 , skipping every 20.

Example 2: 14-D

Distribution beyond $n(x)>0.9$

Assuming $L=10 \mathrm{fb}^{-1}$

Cut	S	B	S/JB
0.90	5×10^{3}	2×10^{6}	3.5

Example 2: 14-D

Verification plots

ça marche! ©

Issues

- How should one choose the function class?
- How should one verify that a d-dimensional density is well-modeled?
- How should one take into account model uncertainty?
- How should one compute data compression efficiency?
efficiency $=$ Info(after compression)/Info(before)

Summary

- The function $D(x)=s(x) /[s(x)+b(x)]$ can be applied to many aspects of data analysis
- Moreover, many practical methods, and tools, are available to approximate it
- However, no one method is guaranteed to give the best approximation in all circumstances. So it is good to experiment with a few of them using tools such as TMVA or StatPatternRecognition

