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Introduction

The goal is o approximate the function D(x)

5(x)

X) = 5(X) +b(x)

where
s(x)
b(x)
d(x) = € s(x) + (1 - ¢) b(x)
e = k/(1+k)
k = p(S)/p(B)

signal density
background density
data density

signal fraction
signal/background ratio
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Introduction

The function D(x) is useful for
* Classification D(x) > D,
° Signal extraction  w(x) = p(S|x) = D/[D+(1-D)/K]

° Data compression RY — [0,1] (x — D)
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Support Vector Machines




Support Vector Machines

Generalization of the Fisher discriminant (Boser,
Guyon and Vapnik, 1992).

Basic Idea

Data that are non-separable in d-dimensions may
be better separated if mapped into a space of
higher dimension, H

h:RY > R"

Use a hyper-plane to partition the high
dimensional space

f(X)=w-h(x)+b
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Support Vector Machines

Consider separable data in the high dimensional space
green plane: wh(x)+b=0

red plane: w.h(x;)+ b =+1

blue plane: w.h(x,)+ b =-1

subtract blue from red
w.[h(x)-h(x,)] = 2
and normalize the vector w

W.[h(x;)-h(x2)] = 2/]|wl|
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Support Vector Machines

The quantity m = W.[h(x,)-h(x,)], the distance between
the red and blue planes, is called the margin. The best
separation occurs when the margin is as large as

possible.
o ©

Note: because m ~ 1/||w]|]|,
maximizing the margin is
equivalent to minimizing

[ lwl|?

Multivariate Discriminants, Harrison B. Prosper 50S'08, Strasbourg




Support Vector Machines

Label the red dots y = +1 and the blue dotsy = -1. The
task is to minimize ||w||2 subject to the constraints

yi [wh(x)+b]>1, i=1..N,

O that is, to minimize the function
2
1 My _%
L(w,b, r) =1||w|

—Zilai[yi (w-h(x)+b)-1]

where the o > 0 are Lagrange
multipliers
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Support Vector Machines

When L(w,b,a) is minimized with respect to w and b, the
Lagrangian L(w,b,a) can be transformed to the form

E(a) = Za —%ZZO{O{ yiy;h(x)-h(x;)

=1 j=1

At the minimum of E(a), the only non-zero coefficients
o are those corresponding to points on the red and blue
planes: that is, the support vectors.
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Support Vector Machines

In general, data are not separable and the constraints
have to be relaxed, for example,

yi.(W.Xi + b) > 1 - F:i
by introducing so-called slack variables ¢; .

Important: Because of the scalar product structure one
can use kernels K(x;, x;) = h(x;).h(x;) to perform
simultaneously the mappmg to hlgh dimensions and the
scalar product efficiently, even in a space of infinite
dimensions! J

E(a) = Za ——Zza a;y;y;[h(x)-h(x;)]

1=l j=1
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SVM - h:R? -> R3

Example
h: (X, %) = (2125, 25) = (X 7 2X,%,, X7 )

h(x)-h(y) = (X2, V2x%,, X2) - (y2,+/2 ylyz,yz

=(x-y)*
o B
... ;-

= k(X y)
Since we do not know which mapping h: x -> z is best

X2
X1 O
O
O
for a given problem, we must try different kernels.
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Naive Bayes

The method is very simple: ignore the dependencies
between variables and approximate the density p(x) by

p(x) =HQ(Xi)

where g(x;) are the 1-D marginal densities of
p(x)
a(x)=| pdx

{xj:xj;txi}
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Naive Bayes

The ndive Bayes estimate of D(x) is then given by

D(x) =)
S(x) +b(x)

In spite of its name, this method can often yield
good results.

I't should be tried, because it is easy to compute and
the 1-d densities can be approximated with kernel
density estimation (KDE), which is the next topic
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Kernel Density Estimation

Basic Idea

Parzen Estimation (1960s)

1Q X—12 N =4
p(x):W;K( hnj MX—A

Mixtures

p(X) = ij¢j (X) J<<N
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Kernel Density Estimation

Why does it work? In the limit N -> o

p(x) =%Zl K(X_hzn j —>jK(%) 0(2)dz

the true density p(x) will be recovered because

K(X_hznj—>5d(x—z), N — oo

The KDE is therefore a consistent estimator of the
probability density p(x)
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Kernel Density Estimation

In principle, so long as the kernel -> 5-function in the
N -> oo limit any kernel will do.

In practice, the most commonly used kernel is the
product of 1-D Gaussians, one for each dimension

X—Z
hi

K(fx-2l)-o0| -3

The h; are called the bandwidths

o
) 12 |1h(27)""
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Kernel Density Estimation -

One advantage of a KDE is that the number of
adjustable parameters can be made small

Indeed, if the same bandwidth h is used for all
dimensions, then there will be only a sing/e
adjustable parameter

] N2
K ([ 2]) = exp _;(Xhzij 12|10 (27)""
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Kernel Density Estimation

The optimal bandwidths are those yielding the best
kernel density estimate of p(x). In principle, this
can be found by minimizing the risk function

R(P, p) = [[P(¥) — p()T dx

In practice, one minimizes some approximation of it.
For d = 1, the (approximate) optimal bandwidth is

given by .
) [ - ]1/5 where M2 = | x°K (X)dx
h= -

K, p,N k, = [ K (%) dx
p, = [ p"(x)*dx
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KDE Example: b-Tagging

tt Event . g . .
SVX Display Two varieties of jeft:
CDF
1. Tagged (Jet 1, Jet 4)

1 2. Untagged (Jet 2, Jet 3)

/ We are often interested in

\ e Pr(Tagged|Jet Variables)

! |2 =22mm
+ : Jet 4
e !
V
Fit 5 24 September, 1992
M t(')p =170+ 10 GeV/c run #40758, event #44414
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KDE Example: b-Tagging

DJ experiment

DUSI

0.2
0.08F

0.15p
0.06p

0.1
0.04F

0.05pF 0.02k

p(x|T) or d(x)

p(x|T) p(T) / d(x)

Tagged- Jef% o(x|T) p(T)
+ p(x[V) p(V)

~
~

-~

T : Untagged-jet x = (P, m, ¢)
® collision pomT 99 J (r'ed curve is d(X))
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KDE Example: b-Tagging

0.18

0.2F

0.15p

o.16fF ¥

0.1

014
0.05p

012

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

" o
Projections of KDE of p(T|x)
(black curve) onto the

P+, n and ¢ axes. Blue points:
- ratio of blue to red histograms
(see previous slide)

Tagged-jet

-~
-~
P
/

®  collision point Untagged-jet
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0.2pF

01F

-1 -0.5 0 0.5 1

Projections of KDE of p(T|x)
Tagged-iet onto 3 randomly chosen
99e] rays through the origin.
o collision point Untagged-jet
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KDE Example: b-Tagging

800

600

400

200p

Tagged- Je’r%

~
~
-~
-~
-
~

®  collision point

400

"

250i

300F
200p

200p

150

100 *

100F

Projections of data weighted
by p(T|x). Recovers tagged
density p(x|T).

Untagged-jet

Multivariate Discriminants, Harrison B. Prosper 50S'08, Strasbourg 26



800

600
800}

600

aoof 600F

400
400F

200p

200F 200k

-1 -0.5 1] 0.5 1
Y Z

Projections of weighted data
onto the 3 randomly

Tagged-jet selected rays through
- | the origin
e collision point Untagged-jet
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Kernel Density Estimation

Practical Issues
° The choice of bandwidth parameters is crucial.

° In regions where the density of points is low,
the kernels will tend to be too far apart.

* A sharp boundary is difficult to model.

° Every evaluation of the KDE requires the
evaluation of N, d-dimensional, kernels. If N is
large this requires a lot of computation.
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Bayesian Neural Networks

Given
D=y, x

X = {X1,..Xn} Y = Y1 YS
of N training examples and the likelihood function

p(ylx, w)

Find
a function n(x) that approximates D(x)
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Bayesian Neural Networks

For classification, (one form of) the likelihood for
the training data is

p(ylx, w) = IT. n(x;, w)¥ [1 - n(x;, w)]*-Y

where  y =0 for background events
y = 1 for signal events
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Bayesian Neural Networks

Procedure: Compute
p(w|D) = p(ylx,w) p(w) / const.

using functions of the form
n(x, w) = 1/[1+exp(-f(x, w))]

from a very large function class and estimate D(x) using
D(x) # n(x) = J n(x, w) p(w|D) dw

The function n(x) is a Bayesian neural network (BNN)
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Bayesian Neural Networks

Questions:
1. Do sufficiently flexible functions f(x, w) exist?

2. Is there a practical way to do the integral?
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Answer 1: Yesl!

Hilbert's 13 problem:
Prove that, in general, the following is impossible

f(Xl,...,Xn) - F( 91(X1),..-, gn(xn) )

In 1957, Kolmogorov proved the
contrary: A function f:R"-> R can be
represented as follows
f(Xl,..,Xn) = Zi:12n+1 QI( ZFIH Gij(xj) ) - P
where G;; are independent of f(.) |

See Scwindling's talk this afternoon for | J.
examples of such functions m. |
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Answer 2: Yes!

Computational Method

Generate a sample of N points {w} from the
density p(w|D), and average over the last M of
them.

Do this using methods of statistical mechanics.
Generate "states” (p, w) with probability

~ exp(-p H),

where the "Hamiltonian", H, is
H=T+V,

with T(p) = p2 and V(w) = In p(w|D)
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Example 1

Software
Flexible Bayesian Modeling, Radford Neal
http://www.cs.utoronto.ca/~radford/fbm.software.html




Example 1: 1-D

Signal
°p+tpbar ->t q b

Background
°p+pbar ->W b b

Function class
°(1,15,1)

MCMC
° 500 tqb + Wbb events
° Use last 20 points in a

1400

1200

1000

800

600

400

200

HT_AllJets_MinusBestJet (scaled

— [

Wbb

g tqb

Entries 5000
Mean -0.2889

RMS  0.7959

chain of 10,000, skipping every 20th
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Example 1: 1-D

Dots
p(S[x) = Hs/(Hs+Hpg)

Hs, Hp, 1-D histograms

Curves
Individual functions
n(X, Wk)

Black curve
h(x) = E,[n(x, w)]

=
ha

-

Prob(1|HT)

0.6

0.4

HT AllJets MinusBestJet

0.2[=_#

Entries 5000
Mean 2.288
RMS 1.8G5

Multivariate Discriminants, Harrison B. Prosper

S50S5'08, Strasbourg




Example 2




do
E (fb/GeV)

Example 2: 14-D

CMS expemmen’r

400

o
800 1200 1600 2000
E; (jet) (GeV)

0..

Ll
400

L H b e e e el
800 1200 1600 2000
E; UEta) (GeV)

Transverse
momentum
spectra

SUSY signal:

black
curve

Signal:Noise

1:25000

do
E (fb/GeV)

do
E (fb/GeV)

0 400

Er (et) (GeV)

A "
800 1200 1600

5000

Er (et,) (GeV)

-qcp’ T TR
10°
10°F
10%E: &
103 i Z":rjcts
10 % mMSUGRA(F1)
10
1
107
10‘2 .. m.f..ln\. IR I TR T R R S
0 400 800 1200 1600 2000
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Missing 10’
transverse 10°
momentum 10°
spectrum < 10°
& 10°
=
(caused by = 10°
iy
escape of © 10
neutrinos 1
and SUSY 107"
particles) 1072

dtjets

E
; e ? +  (Ev. ¢)

.'.'.'.I.'IE].I ..I.I.'.':._“.Iﬂ o LTI '.'_:I.'T]. I.l"lrﬂ_['

“ 1SLGRA(F 1)

Variables, x:

4 X (ET: n, (I))

D_
n_
wll

dim(x) = 14

o LSRR AR AP AL

400 800 1200 1600 2000
Missing ET (GeV)
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Example 2: 14-D

Signal
250 p+p -> gluino, gluino (NSUGRA) events

Background
250 p+p -> top, anti-top events

Function class
(14, 40, 1) (dim(w) = 64D I ®
MCMC

Use last 100 points (that is, networks) in a
Markov chain of 10,000, skipping every 20.
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Cut S B

Distribution e
beyond n(x) > 0.9 10°E 5 1
Assuming L = 10 fb! “E

090 5Bx1032x10¢ 3bH S
0.95 4x1037x10°> 4.7
0.99 1x103 2x104 7.0 107!

Example 2: 14-D

S//B

1072

III|IIII 11 1 1
09 092 094 0.96

Network Output

P I
0.98
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T ™7 T
8
7
— —_ 3]
> =
@ fuk]
¢ 3 s
gF’p— éh— 4
5|y sy,
2
1
GU 100 200 300 400 O{] 100 200 300 400
Ey (jet) (GeV) E, (jet,) (GeV)

0800 400
E, (jet,) (GeV) Er (et,) (GeV)

do
E (fb/GeV)

=

0 200 300 400
Missing ET (GeV)

Verification plots

ca marchel ©
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Issues

° How should one choose the function class?

°* How should one verify that a d-dimensional density is
well-modeled?

* How should one take into account model uncertainty?
* How should one compute data compression efficiency?

efficiency = Info(after compression)/Info(before)
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Summary

°* The function D(x) = s(x) / [s(x) + b(x)] can be
applied to many aspects of data analysis

° Moreover, many practical methods, and tools, are
available to approximate it

° However, no one method is guaranteed to give the
best approximation in all circumstances. So it is
good to experiment with a few of them using tools
such as TMVA or StatPatternRecognition
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