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IntroductionIntroduction
The goal is to approximate the function D(x)

where
s(x) signal density
b(x) background density
d(x) = ε s(x) + (1 – ε) b(x) data density
ε = k/(1+k) signal fraction
k = p(S)/p(B) signal/background ratio

( )( )
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IntroductionIntroduction
The function D(x) is useful for

hClassification D(x) > D0

hSignal extraction w(x) = p(S|x) = D/[D+(1-D)/k]

hData compression Rd → [0,1] (x → D)



Support Vector MachinesSupport Vector Machines
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Support Vector MachinesSupport Vector Machines
Generalization of the Fisher discriminant (Boser, 

Guyon and Vapnik, 1992).

Basic Idea
Data that are nonnon--separableseparable in d-dimensions may 

be better separated if mapped into a space of 
higher dimension, H 

Use a hyper-plane to partition the high 
dimensional space 

bxhwxf +⋅= )()(

: d Hh R R→
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Support Vector MachinesSupport Vector Machines
Consider separableseparable data in the high dimensional space

green plane: w.h(x) + b = 0
red plane: w.h(x1)+ b =+1
blue plane: w.h(x2)+ b =-1

subtract blue from red

w.[h(x1)-h(x2)] = 2

and normalize the vector w

ŵ.[h(x1)-h(x2)] = 2/||w||

h(x1)
h(x2)

w
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Support Vector MachinesSupport Vector Machines
The quantity m = ŵ.[h(x1)-h(x2)], the distance between 
the red and blue planes, is called the margin. The best 

separation occurs when the margin is as large as 
possible. 

Note: because m ~ 1/||w||, 
maximizing the margin is 
equivalent to minimizing

||w||2
h(x1)

h(x2)

w
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Support Vector MachinesSupport Vector Machines
Label the red dots y = +1 and the blue dots y = -1. The 
task is to minimize ||w||2 subject to the constraints

yi [w.h(xi) + b] ≥ 1, i = 1 … N,

that is, to minimize the function

x1

x2

w
( )
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Support Vector MachinesSupport Vector Machines
When L(w,b,α) is minimized with respect to w and b, the 
Lagrangian L(w,b,α) can be transformed to the form

1 1 1
( ) ( )1( )

2

N N N

i i j i j i
i i j

jh x h xE y yα α α α
= = =

⋅= −∑ ∑∑

At the minimum of E(α), the only non-zero coefficients 
α are those corresponding to points on the red and blue
planes: that is, the support vectors.
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Support Vector MachinesSupport Vector Machines

In general, data are not separable and the constraints 
have to be relaxed, for example, 

yi.(w.xi + b) ≥ 1 – ξi

by introducing so-called slack variables ξi .

1 1 1

1( ) [ ( ) ( )]
2 i j

N N N

i i j i j
i i j

h xE y hy xα α α α
= = =

⋅= −∑ ∑∑

ImportantImportant: Because of the scalar product structure one 
can use kernelskernels K(xi, xj) = h(xi).h(xj) to perform 
simultaneously the mapping to high dimensions and the 
scalar product efficiently, even in a space of infinite 
dimensions!
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SVM SVM –– h:Rh:R22 --> R> R33
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Since we do not know which mapping h: x -> z is best 
for a given problem, we must try different kernels. 

Example



NaNaïïve ve BayesBayes



Multivariate Discriminants,  Harrison B. Prosper                SOS'08, Strasbourg 14

NaNaïïve ve BayesBayes

The method is very simple: ignore the dependencies 
between variables and approximate the density p(x) by

1

ˆ ( ) ( )
d

i
i

p x q x
=

= ∏

where q(xi) are the 1-D marginal densities of 
p(x)

{ }:

( ) ( )
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q x p x dx
≠

= ∫



Multivariate Discriminants,  Harrison B. Prosper                SOS'08, Strasbourg 15

NaNaïïve ve BayesBayes
The naïve Bayes estimate of D(x) is then given by

In spite of its name, this method can often yield 
good results. 

It should be tried, because it is easy to compute and 
the 1-d densities can be approximated with kernel 
density estimation (KDE), which is the next topic

ˆ( )( ) ˆˆ( ) ( )
s xD x

s x b x
=
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Kernel Density EstimationKernel Density Estimation
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Kernel Density EstimationKernel Density Estimation
Basic Idea

Parzen Estimation (1960s)

Mixtures
1

1ˆ ( )
N

n

n

x zp x K
N h=
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N = 4
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Kernel Density EstimationKernel Density Estimation
Why does it work? In the limit N -> ∞

the true density p(x) will be recovered because 

The KDE is therefore a consistent estimator of the 
probability density p(x)

1

1( ) ( )
N
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n

x z x zp x K K p z dz
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Kernel Density EstimationKernel Density Estimation
In principle, so long as the kernel -> δ-function in the 

N -> ∞ limit any kernel will do. 

In practice, the most commonly used kernel is the 
product of 1-D Gaussians, one for each dimension

The hi are called the bandwidths

( )
2
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Kernel Density EstimationKernel Density Estimation
One advantage of a KDE is that the number of 

adjustable parameters can be made small 

Indeed, if the same bandwidth h is used for all 
dimensions, then there will be only a single
adjustable parameter

( )
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Kernel Density EstimationKernel Density Estimation
The optimal bandwidths are those yielding the best 

kernel density estimate of p(x). In principle, this 
can be found by minimizing the risk function

In practice, one minimizes some approximation of it. 
For d = 1, the (approximate) optimal bandwidth is
given by

2ˆ ˆ( , ) [ ( ) ( )]R p p p x p x dx= −∫
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KDE Example: bKDE Example: b--TaggingTagging

e+ Jet 4

Jet 1

Jet 3Jet 2

tt  Event

run #40758, event #44414
24 September,  1992

SVX Display

ν
Mtop = 170 ±  10 GeV/c2Fit

l1

l2
l1

l2

= 4.5 mm

= 2.2 mm

CDF

Two varieties of jet:

1. Tagged (Jet 1, Jet 4)

2. Untagged (Jet 2, Jet 3)

We are often interested in

Pr(Tagged|Jet Variables)
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KDE Example: bKDE Example: b--TaggingTagging

Tagged-jet

Untagged-jetcollision point

p(T|x)= pp(x|T) p(T) / dd(x)

d(x) = pp(x|T) p(T) 
+ p(x|U) p(U)

x = (PT, η, φ)
(red curve is dd(x))

pp(
x|

T)
 o

r 
dd(

x) pT

η

φ

DØ experiment
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KDE Example: bKDE Example: b--TaggingTagging

Tagged-jet

Untagged-jetcollision point

Projections of KDE of p(T|x) 
(black curve) onto the
PT, η and φ axes. Blue points: 
ratio of blue to red histograms

(see previous slide)
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Tagged-jet

Untagged-jetcollision point

KDE Example: bKDE Example: b--TaggingTagging

Projections of KDE of p(T|x)
onto 3 randomly chosen
rays through the origin.
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KDE Example: bKDE Example: b--TaggingTagging

Tagged-jet

Untagged-jetcollision point

Projections of data weighted 
by p(T|x). Recovers tagged 
density p(xx|T).
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Tagged-jet

Untagged-jetcollision point

Projections of weighted data 
onto the 3 randomly
selected rays through

the origin

KDE Example: bKDE Example: b--TaggingTagging
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Kernel Density EstimationKernel Density Estimation
Practical Issues
hThe choice of bandwidth parameters is crucial.

hIn regions where the density of points is low, 
the kernels will tend to be too far apart.

hA sharp boundary is difficult to model. 

hEvery evaluation of the KDE requires the 
evaluation of N, d-dimensional, kernels. If N is 
large this requires a lot of computation. 



Bayesian Neural NetworksBayesian Neural Networks
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Given
D D = y, x

x = {x1,…xN}, y = {y1,…yN}
of N training examples and the likelihood function 
p(y|x, w)

Find
a function n(x) that approximates D(x) 

Bayesian Neural NetworksBayesian Neural Networks
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For classification, (one form of) the likelihood for 
the training data is 

p(y|x, ww) = Πi n(xi, ww)y [1 – n(xi, ww)]1-y

where y = 0 for background events
y = 1 for signal events

Bayesian Neural NetworksBayesian Neural Networks
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Bayesian Neural NetworksBayesian Neural Networks
Procedure: Compute

p(ww|D)  = p(y|x,ww) p(ww) / const.

using functions of the form 

n(x, ww) = 1/[1+exp(-f(x, ww))] 

from a very large function class and estimate D(x) using

D(x) ≈ n(x) = ∫ n(x, ww) p(ww|DD) dw

The function n(x) is a Bayesian neural network (BNN)
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Questions:

1. Do sufficiently flexible functions f(x, ww) exist?

2. Is there a practical way to do the integral? 

Bayesian Neural NetworksBayesian Neural Networks
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Answer 1: Yes!Answer 1: Yes!

Hilbert’s 13th problem: 
Prove that, in general, the following is impossible
f(x1,…,xn) = F( g1(x1),…, gn(xn) )

In 1957, Kolmogorov proved the
contrary: A function f:Rn -> R can be
represented as follows
f(x1,..,xn) = ∑i=1

2n+1 Qi( ∑j=1
n Gij(xj) )

where Gij are independent of f(.)
See Scwindling’s talk this afternoon for
examples of such functions 
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Answer 2: Yes!Answer 2: Yes!
Computational Method

Generate a sample of N points {w} from the 
density p(w|D), and average over the last M of 
them.

Do this using methods of statistical mechanics. 
Generate “states” (p, w) with probability

~ exp(-β H),

where the “Hamiltonian”, H, is
H = T + V, 

with T(p) = p2 and V(w) = ln p(w|D) 



Example 1Example 1

Software
Flexible Bayesian Modeling, Radford Neal
http://www.cs.utoronto.ca/~radford/fbm.software.html
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Example 1: 1Example 1: 1--DD
Signal
hp+pbar -> t q b

Background
hp+pbar -> W b b

Function class
h(1, 15, 1)

MCMC
h500 tqb + Wbb events
hUse last 20 points in a 

chain of 10,000,

x

tqb

skipping every 20th

Wbb
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Example 1: 1Example 1: 1--DD

x

Dots
p(S|x) = HS/(HS+HB)

HS, HB, 1-D histograms

Curves 
Individual functions
n(x, wwkk)

Black curve
n(x) = Ew[n(x, w)]



Example 2Example 2
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Example 2: 14Example 2: 14--DD

Transverse
momentum
spectra

SUSY signal:
black
curve

Signal:Noise

1:250001:25000

CMS experiment



Multivariate Discriminants,  Harrison B. Prosper                SOS'08, Strasbourg 41

Example 2: 14Example 2: 14--DD

Missing
transverse
momentum
spectrum

(caused by
escape of
neutrinos
and SUSY
particles)

Variables, x:

4 x (ET, η, φ)

+     (ET, φ)

dim(x) = 1414
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Likelihood Prior

Example 2: 14Example 2: 14--DD
Signal

250 p+p -> gluino, gluino (mSUGRA) events

Background
250 p+p -> top, anti-top events

Function class
(14, 40, 1) (dim(w) = 641) !!! /

MCMC
Use last 100 points (that is, networks) in a 

Markov chain of 10,000, skipping every 20.
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Example 2: 14Example 2: 14--DD

Distribution
beyond n(x) > 0.9

Assuming L = 10 fb-1

Cut S B S/√B
0.90 5x103 2x106     3.5
0.95 4x103 7x105 4.7
0.99 1x103 2x104 7.0
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Example 2: 14Example 2: 14--DD

Verification plots

ça marche! ☺
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IssuesIssues
hHow should one choose the function class?

hHow should one verify that a d-dimensional density is 
well-modeled?

hHow should one take into account model uncertainty?

hHow should one compute data compression efficiency?

efficiency = Info(after compression)/Info(before)
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SummarySummary
hThe function D(x) = s(x) / [s(x) + b(x)] can be 

applied to many aspects of data analysis

hMoreover, many practical methods, and tools, are 
available to approximate it

hHowever, no one method is guaranteed to give the 
best approximation in all circumstances. So it is 
good to experiment with a few of them using tools 
such as TMVA or StatPatternRecognition
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