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Optimal DiscriminationOptimal Discrimination
Examples where optimal discrimination, or 

classification, could be useful: 
hgood/bad run
hnormal/bad calorimeter cell
hreal/fake lepton
hreal/fake jet
hreal/fake photon
hheavy/light-jet
hisolated/non-isolated lepton
hsignal/background
hetc…
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Optimal DiscriminationOptimal Discrimination
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Note, however, that 
interesting data are 
usually multivariate:

x = (x1,x2,..., xn)

Example: 
DØ data, 1995,
top discovery 
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Optimal DiscriminationOptimal Discrimination
For simplicity, consider event classification in 1-dimension

Definition of optimal: minimum misclassification cost

Background density
p(x, B) = p(x|B) p(B)

Signal densitySignal density
p(x, S) = p(x|S) p(S)

x
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The cost of misclassification is given by
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H(x) is the Heaviside function 
H(x) = 1 if x > 0, 0 otherwise

Signal lossSignal loss

BackgroundBackground
contaminationcontamination
CS – cost of

signal loss
CB – cost of 

background
contamination
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Optimal DiscriminationOptimal Discrimination
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Minimizing the cost
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Optimal DiscriminationOptimal Discrimination

gives the Bayes discriminant
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( | )
1
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The same form holds when x is multi-dimensional

Optimal DiscriminationOptimal Discrimination

The Bayes discriminant is so called
because it is related to Bayes theorem

A classifier that achieves the minimum cost, and fewest
mistakes, is said to have reached the Bayes limit

( )
( )

p SBD B
p B

= ( | )
( | )

p x SB
p x B

=

is the Bayes factor, which is identical to the 
likelihood ratio when there are no unknown parameters

where 
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Note: to achieve optimal discrimination, it is not
necessary to use the correct prior signal to background
ratio  k = p(S) / p(B). Suppose, you chose k = 1.

In this case, the discriminant D(x) is given by 
D(x) = s(x) / [s(x) + b(x)]

where s(x) = p(x|S) and b(x) = p(x|B). Then, because of
the one-to-one relationship,

Optimal DiscriminationOptimal Discrimination

( | ) ( ) ( ) /[ ( ) ( ) (1 ( )) ( )]p S x D x p S D x p S D x p B= + −

a cut on D(x) implies a corresponding cut on p(S|x)
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Optimal Signal ExtractionOptimal Signal Extraction
In fact, it is not necessary to apply a cut to extract
the signal: the signal can be determined using
event-by-event weighting*. Write the data density as

d(x) = ε s(x) + (1-ε) b(x), ε = signal fraction

Event weighting is simply multiplication by a weight 
function w(x)

w(x)d(x) = ε w(x)s(x) + (1-ε) w(x)b(x)

*R. Barlow, “Event Classification Using Weighting Methods,”
J. Comp. Phys. 72, 202 (1987)
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Optimal Signal ExtractionOptimal Signal Extraction
Compute the expectations
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Then the signal fraction, and the variance of its
estimator 
are given 
by where n

is the
number 
of events

observed data

signal

background
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Optimal Signal ExtractionOptimal Signal Extraction
Roger Barlow showed that the signal size is 
determined with the smallest variance when events 
are weighted with any linear function of

( )( ) ( | )
( ) ( ) /

s xw
k

x p S x
s s b x

= =
+

Since we do not know k, we start with a reasonable 
guess for it (e.g., a prediction), derive an updated 
value for k through event weighting and repeat the 
procedure until the value of k converges



Computing Multivariate Computing Multivariate 
DiscriminantsDiscriminants



Multivariate Discriminants,  Harrison B. Prosper                SOS'08, Strasbourg 15

Learning from ExamplesLearning from Examples
Given N examples (x,y)1, (x,y)2,…(x,y)N the task is to 

construct an approximation to the discriminant
D(x). x are called feature variables and y are the 
class labels

There are two general approaches to the problem: 
Machine Learning

Teach a “machine” to learn f(x) by feeding it 
examples, that is, training data DD.

Bayesian Learning
Infer f(x) given the likelihood for the training 

data DD and a prior on the space of functions f(x). 
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Machine LearningMachine Learning
Given N examples (x,y)1, (x,y)2,…(x,y)N we specify:

hA function classfunction class Fw = { f(x, w) }
hA risk functionrisk function R(f) = ∫L(y, f) p(x, y) dx dy
hA constraintconstraint C(w) on the parameters w

The loss function L(y, f) measures how much we lose 
if we make a poor choice from the function class.

In practice, we minimize the empirical risk plus the 
constraint

1

1( ) ( , ( , )) ( )
N

i i
i

E L y f x C
N

w w w
=

= +∑
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Bayesian LearningBayesian Learning
Ingredients:

Pr(DD|ff) the likelihood likelihood (of training data)
Pr(ff) the priorprior (over functions)

Then compute:
Pr(ff|DD) = Pr(DD|ff) Pr(ff)/Pr(DD)

In practice, we work with some function class
Fw = { f(x, ww) }

and make inferences on the parameters:
Pr(ww|DD) = Pr(DD|ww) Pr(ww)/Pr(DD)
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Write
D D = x, y

x = {x1,…xN}, y = {y1,…yN}
of N training examples

Then Bayes’ theorem becomes

p(ww|x, y) = p(x, y|ww) p(ww) / p(x, y)

= p(y|x, w) p(x|ww) p(ww) / p(y|x) p(x)

P(AB) = P(A|B) P(B)
= P(B|A) P(A)

P(A|B) = P(B|A) P(A)/P(B)

Bayesian LearningBayesian Learning
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The data x do not depend on ww since they are generated 
independently of the particular function class we are 
using. Consequently, p(x|ww) = p(x) and, therefore,

p(ww|x, y) = p(y|x, w) p(x|ww) p(ww) / p(y|x) p(x)
= p(y|x, w) p(ww) / p(y|x)

The likelihood for the training data is p(y|x, ww), the 
probability density of the class labels, or targets y, 
given data x, evaluated for a given training sample 

We now consider two possible forms for p(y|x, ww)

Bayesian LearningBayesian Learning
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Likelihood for regression (with yi є R)

p(y|x, ww) = Πi √(2π/τ) exp[-½τ (yi – f(xi, ww))2]  (1)

Likelihood for classification (with yi є {0, 1} )

p(y|x, ww) = Πi f(xi, ww)y [1 – f(xi, ww)]1-y (2)

Bayesian LearningBayesian Learning

Note: If events are weighted, then each term must
be raised to the power of the associated event 
weight wE
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Consider the logarithm of the “regression” likelihood

E(w) =  (1/N) Σ [yi – f(xi, ww)]2 + [2/(Nτ)] ln p(ww)
empirical risk constraint

where we have re-scaled E -> (2/Nτ) E. 

Now take the limit N → ∞. In that limit, the 
contribution of the prior goes to zero and we obtain

E(ww) = ∫dx ∫dy [y – f(x, ww)]2 p(x, y)
= ∫dx p(x) ∫ dy [y – f(x, ww)]2 p(y|x)

Bayesian LearningBayesian Learning
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IFIF the class Fw, to which f(x, ww) belongs, is large 
enough then it will contain a function f(x, w*w*) which 
minimizes E(w). This minimum occurs at

f(x, w*w*) = ∫y p(y|x) dy

that is, f(x, w*w*) is the conditional expectation of the 
target y.

Bayesian LearningBayesian Learning

Exercise: Prove this
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Suppose we use the “regression” likelihood with only 
two values for y, 0 or 1.

In this case, p(y|x) = δ(y-1) p(1|x) + δ(y-0) p(0|x), so

f(x, w*w*) = ∫y p(y|x) dy
= p(1|x)
= p(x|1) p(1) / [p(x|1) p(1) + p(x|0) p(0)]

which is just the Bayes’ discriminant, disguised as 
Bayes’ theorem!

Bayesian LearningBayesian Learning
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Verification of Verification of DiscriminantsDiscriminants
To verify, in full generality, that q(x) is a 

satisfactory approximation of the discriminant
D(x) = s(x)/[s(x) + b(x)] is a very challenging 
problem 

However, some simple and useful heuristics exist, 
such as one suggested by event weighting



Multivariate Discriminants,  Harrison B. Prosper                SOS'08, Strasbourg 25

Verification of Verification of D(xD(x))
Weight equal numbers of signal and background 

events (using events not from the training sample) 
by q(x), that is, compute

sq(x) = s(x) q(x) and bq(x) = b(x) q(x)

Then, if q(x) ≈ D(x), the sum of the weighted 
distributions, sq(x) and bq(x), should recover the 
signal density s(x)

sq(x) + bq(x) ≈ s(x)
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Verification of Verification of D(xD(x))

Two of the variables used in the DØ search for single 
top quarks, illustrating the verification of D(x). 
Shown are sq(x), bq(x), dq(x) = sq + bq and s(x) (the dots). 



Grid SearchesGrid Searches
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x

y

Apply cuts at 
each grid point 
Apply cuts at 
each grid point 

Grid Search Grid Search 

x x
y y
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We refer to 
as a cut-point
We refer to 
as a cutcut--pointpoint

( ,x yi i )

Suffers from the curse of dimensionality ~ Mdim(d)Suffers from the curse of dimensionality ~ MMdim(ddim(d))
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Random Grid SearchRandom Grid Search
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H.B.P. et al., Proceedings, CHEP 1995
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Random Grid Search Random Grid Search –– ExampleExample
CMS mSUGRA study 

The Focus Point Region
m0 = 3280 GeV, 
m1/2 = 300 GeV, 
A0 = 0, 
tanβ = 10,
sign(μ) = +1 
mtop = 175 GeV

Event selection
– MET > 40 GeV
– Nj ≥ 5 jets, with ET > 30 GeV
– |ηj1|, |ηj2| < 2.5

0χχ ±→pp
ggpp ~~→

00 χχ→pp

−+→ χχpp



Multivariate Discriminants,  Harrison B. Prosper                SOS'08, Strasbourg 31

Random Grid Search Random Grid Search –– ExampleExample

0χχ ±→pp

ggpp ~~→

00 χχ→pp

−+→ χχpp

Reaction B. F. (%)

89.0

6.3

2.6

0.5

Event Source σ (fb)

QCD 2.0 x 106

ttbar 2.2 x 104

mSUGRA 6.7 x 102

W+jets 3.1 x 103

Z+jets 1.5 x 103

Signal : Noise ~ 1 : 30001 : 3000
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Random Grid Search Random Grid Search –– ExampleExample

Note: Spectra for ≥ 4 jets
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Random Grid Search Random Grid Search –– ExampleExample
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Random Grid Search Random Grid Search –– ExampleExample
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Random Grid Search Random Grid Search –– ExampleExample

Random grid search
over 5 variables

MET, PTj, j=1,…,4

assuming 1 fb-1



Quadratic & Linear Quadratic & Linear DiscriminantsDiscriminants
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Quadratic Quadratic DiscriminantsDiscriminants

1

/ 2 1/ 2

exp[ ( ) ( ) / 2]Gaussian( | , )
(2 ) | |

T

d

x xx μ μμ
π

−− − Σ
Σ

−
=Σ

Suppose that each density s(x) and b(x) 
is a multivariate Gaussian 

where μ is the vector of means and Σ is the 
covariance matrix. In this case, can write an 
explicit expression for the Bayes factor

( ) ( ) / ( )B x s x b x=
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Quadratic Quadratic DiscriminantsDiscriminants
It is usually more convenient to consider the 
logarithm of the Bayes factor, 

λ(x) = ln B(x), 

which, after eliminating non-essential constants, 
can be written as

1 1( ) ( ) ( ) ( ) ( )T T
B B B S S Sx x x x xλ μ μ μ μ− −= − Σ − − − Σ −
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Quadratic Quadratic DiscriminantDiscriminant
A fixed value of λ(x) defines a quadratic hyper-

surface that partitions the d-dimensional 
feature space {x} into signal-rich and 

background-rich regions. 

Decision
boundary
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Linear Linear DiscriminantDiscriminant

( )x w xλ = ⋅

w

kxw >⋅

kxw <⋅

If, in the quadratic function λ(x), we use the 
same covariance matrix for each class of events  

e.g., Σ = ΣS + ΣB 
we arrive at 

Fisher’s Discriminant

where w is a vector given by

)(1
BSw μμ −Σ∝ −
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SummarySummary
1. If the goal is to classify objects with the fewest

mistakes, it is sufficient to apply a threshold, 
that is, a cut, to the discriminant

( )( )
( ) ( )

s xD x
s x b x

=
+

2. If the goal is to extract the signal strength
with minimum variance, it is sufficient to weight 
events using the associated weight function

( )( )
( ) [1 ( )] /

D xw
k

x
D s D x

=
+ −
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