

Multivariate Discriminants I

Harrison B. Prosper Florida State University

School Of Statistics

Insitut Pluridisciplinaire Hubert Curien, Strasbourg 30 June 2008 - 04 July 2008

Outline

- Introduction
- Computing Multivariate Discriminants
- Grid Searches
- Quadratic & Linear Discriminants
- Summary

Introduction

Examples where optimal discrimination, or classification, could be useful:

- good/bad run
- normal/bad calorimeter cell
- real/fake lepton
- real/fake jet
- real/fake photon
- heavy/light-jet
- isolated/non-isolated lepton
- signal/background
- etc...

Note, however, that interesting data are usually multivariate:

$$x = (x_1, x_2, \dots, x_n)$$

Example:

DØ data, 1995, top discovery

$$p\overline{p} \rightarrow t\overline{t} \rightarrow l + jets$$

For simplicity, consider event classification in 1-dimension

Definition of optimal: minimum misclassification cost

The cost of misclassification is given by

Minimizing the cost

$$C(x_0) = C_S \int H(x_0 - x) p(x, S) dx + C_B \int H(x - x_0) p(x, B) dx$$

with respect to the boundary x_0

$$0 = C_S \int \delta(x_0 - x) p(x, S) dx - C_B \int \delta(x - x_0) p(x, B) dx$$
$$= C_S p(x_0, S) - C_B p(x_0, B)$$

gives the Bayes discriminant
$$BD = \frac{C_B}{C_S} = \frac{p(x_0 \mid S)p(S)}{p(x_0 \mid B)p(B)}$$

The same form holds when x is multi-dimensional

$$BD = B \frac{p(S)}{p(B)}$$
 where $B = \frac{p(x \mid S)}{p(x \mid B)}$

is the Bayes factor, which is identical to the likelihood ratio when there are no unknown parameters

The Bayes discriminant is so called because it is related to Bayes theorem $p(S \mid x) = \frac{BD}{1 + BD}$

$$p(S \mid x) = \frac{BD}{1 + BD}$$

A classifier that achieves the minimum cost, and fewest mistakes, is said to have reached the Bayes limit

Note: to achieve optimal discrimination, it is *not* necessary to use the correct prior signal to background ratio k = p(S) / p(B). Suppose, you chose k = 1.

In this case, the discriminant D(x) is given by D(x) = s(x) / [s(x) + b(x)]

where s(x) = p(x|S) and b(x) = p(x|B). Then, because of the one-to-one relationship,

$$p(S \mid x) = D(x)p(S)/[D(x)p(S) + (1-D(x))p(B)]$$

a cut on D(x) implies a corresponding cut on p(S|x)

Optimal Signal Extraction

In fact, it is not necessary to apply a cut to extract the signal: the signal can be determined using event-by-event weighting*. Write the data density as

$$d(x) = \varepsilon s(x) + (1-\varepsilon) b(x)$$
, $\varepsilon = signal fraction$

Event weighting is simply multiplication by a weight function w(x)

$$w(x)d(x) = \varepsilon w(x)s(x) + (1-\varepsilon) w(x)b(x)$$

*R. Barlow, "Event Classification Using Weighting Methods," J. Comp. Phys. 72, 202 (1987)

Optimal Signal Extraction

Compute the expectations

$$\overline{w} = \int dx \, w(x) d(x) \qquad \text{observed data}$$

$$\overline{w}_s = \int dx \, w(x) s(x) \qquad \text{signal}$$

$$\overline{w}_b = \int dx \, w(x) b(x) \qquad \text{background}$$

Then the signal fraction, and the variance of its

estimator are given by
$$\mathcal{E} = (\overline{w} - \overline{w}_b)/(\overline{w}_s - \overline{w}_b)$$

$$\operatorname{Var}(\hat{\varepsilon}) = \frac{1}{n} \int dx \left(\frac{w - \overline{w}_b}{\overline{w}_s - \overline{w}_b} \right)^2 d(x)$$
 where n is the number of event

Optimal Signal Extraction

Roger Barlow showed that the signal size is determined with the smallest variance when events are weighted with any linear function of

$$w(x) = p(S \mid x) = \frac{s(x)}{s(s) + b(x)/k}$$

Since we do not know k, we start with a reasonable guess for it (e.g., a prediction), derive an updated value for k through event weighting and repeat the procedure until the value of k converges

Computing Multivariate Discriminants

Learning from Examples

Given N examples $(x,y)_1$, $(x,y)_2$,... $(x,y)_N$ the task is to construct an approximation to the discriminant D(x). x are called **feature variables** and y are the class labels

There are two general approaches to the problem:

Machine Learning

Teach a "machine" to learn f(x) by feeding it examples, that is, training data D.

Bayesian Learning

Infer f(x) given the likelihood for the training data D and a prior on the space of functions f(x).

Machine Learning

Given N examples $(x,y)_1$, $(x,y)_2$,... $(x,y)_N$ we specify:

- A function class
- A risk function
- A constraint

$$F_{w} = \{ f(x, w) \}$$

$$R(f) = \int L(y, f) p(x, y) dx dy$$

 $C(\mathbf{w})$ on the parameters \mathbf{w}

The loss function L(y, f) measures how much we lose if we make a poor choice from the function class.

In practice, we minimize the empirical risk plus the constraint 1 N

$$E(w) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i, w)) + C(w)$$

Ingredients:

```
Pr(D|f) the likelihood (of training data)
Pr(f) the prior (over functions)
```

Then compute:

$$Pr(f|D) = Pr(D|f) Pr(f)/Pr(D)$$

In practice, we work with some function class $F_w = \{ f(x, w) \}$

and make inferences on the parameters:

$$Pr(w|D) = Pr(D|w) Pr(w)/Pr(D)$$

Write

$$\mathbf{D} = \mathbf{x}, \mathbf{y}$$

 $\mathbf{x} = \{x_1, ..., x_N\}, \mathbf{y} = \{y_1, ..., y_N\}$
of N training examples

$$P(AB) = P(A|B) P(B)$$
$$= P(B|A) P(A)$$

$$P(A|B) = P(B|A) P(A)/P(B)$$

Then Bayes' theorem becomes

$$p(\mathbf{w}|\mathbf{x},\mathbf{y}) = p(\mathbf{x},\mathbf{y}|\mathbf{w}) p(\mathbf{w}) / p(\mathbf{x},\mathbf{y})$$
$$= p(\mathbf{y}|\mathbf{x},\mathbf{w}) p(\mathbf{x}|\mathbf{w}) p(\mathbf{w}) / p(\mathbf{y}|\mathbf{x}) p(\mathbf{x})$$

The data x do not depend on w since they are generated independently of the particular function class we are using. Consequently, p(x|w) = p(x) and, therefore,

$$p(\mathbf{w}|\mathbf{x},\mathbf{y}) = p(\mathbf{y}|\mathbf{x},\mathbf{w}) p(\mathbf{x}|\mathbf{w}) p(\mathbf{w}) / p(\mathbf{y}|\mathbf{x}) p(\mathbf{x})$$
$$= p(\mathbf{y}|\mathbf{x},\mathbf{w}) p(\mathbf{w}) / p(\mathbf{y}|\mathbf{x})$$

The likelihood for the training data is p(y|x, w), the probability density of the class labels, or targets y, given data x, evaluated for a given training sample

We now consider two possible forms for p(y|x, w)

Likelihood for regression (with $y_i \in R$)

$$p(y|x, w) = \prod_{i} \int (2\pi/\tau) \exp[-\frac{1}{2}\tau (y_{i} - f(x_{i}, w))^{2}]$$
 (1)

Likelihood for classification (with $y_i \in \{0, 1\}$)

$$p(\mathbf{y}|\mathbf{x},\mathbf{w}) = \Pi_{i} f(\mathbf{x}_{i},\mathbf{w})^{y} [1 - f(\mathbf{x}_{i},\mathbf{w})]^{1-y}$$
 (2)

Note: If events are weighted, then each term must be raised to the power of the associated event weight w_{E}

Consider the logarithm of the "regression" likelihood

$$E(\mathbf{w}) = (1/N) \sum [y_i - f(x_i, \mathbf{w})]^2 + [2/(N\tau)] \ln p(\mathbf{w})$$
empirical risk constraint

where we have re-scaled E -> $(2/N\tau)$ E.

Now take the limit $N \to \infty$. In that limit, the contribution of the prior goes to zero and we obtain

$$E(\mathbf{w}) = \int dx \int dy [y - f(x, \mathbf{w})]^2 p(x, y)$$
$$= \int dx p(x) \int dy [y - f(x, \mathbf{w})]^2 p(y|x)$$

IF the class F_w , to which f(x, w) belongs, is large enough then it will contain a function $f(x, w^*)$ which minimizes E(w). This minimum occurs at

$$f(x, w^*) = \int y p(y|x) dy$$

that is, $f(x, w^*)$ is the conditional expectation of the target y.

Exercise: Prove this

Suppose we use the "regression" likelihood with only two values for y, 0 or 1.

In this case,
$$p(y|x) = \delta(y-1) p(1|x) + \delta(y-0) p(0|x)$$
, so

$$f(x, w^*) = \int y p(y|x) dy$$

= $p(1|x)$
= $p(x|1) p(1) / [p(x|1) p(1) + p(x|0) p(0)]$

which is just the Bayes' discriminant, disguised as Bayes' theorem!

Verification of Discriminants

To verify, in full generality, that q(x) is a satisfactory approximation of the discriminant D(x) = s(x)/[s(x) + b(x)] is a very challenging problem

However, some simple and useful heuristics exist, such as one suggested by event weighting

Verification of D(x)

Weight equal numbers of signal and background events (using events not from the training sample) by q(x), that is, compute

$$s_q(x) = s(x) q(x)$$
 and $b_q(x) = b(x) q(x)$

Then, if $q(x) \approx D(x)$, the sum of the weighted distributions, $s_q(x)$ and $b_q(x)$, should recover the signal density s(x)

$$s_q(x) + b_q(x) \approx s(x)$$

Verification of D(x)

Two of the variables used in the DØ search for single top quarks, illustrating the verification of D(x). Shown are $s_q(x)$, $b_q(x)$, $d_q(x) = s_q + b_q$ and s(x) (the dots).

Grid Searches

Grid Search

Apply cuts at each grid point

$$x > x_i$$

$$y > y_i$$

We refer to (x_i, y_i) as a *cut-point*

Suffers from the curse of dimensionality ~ Mdim(d)

Random Grid Search

CMS mSUGRA study

The Focus Point Region

$$\begin{array}{lll} \mathbf{m}_0 & = 3280~\text{GeV}, & pp \rightarrow \widetilde{g}~\widetilde{g} \\ \mathbf{m}_{1/2} & = 300~\text{GeV}, & pp \rightarrow \chi^\pm~\chi^0 \\ A_0 & = 0, & pp \rightarrow \chi^\pm~\chi^- \\ \tan\beta & = 10, & pp \rightarrow \chi^+~\chi^- \\ \text{sign}(\mu) & = +1 & pp \rightarrow \chi^0~\chi^0 \end{array}$$

Event Selection

- ME_T > 40 GeV
- $N_j \ge 5$ jets, with $E_T > 30$ GeV $|\eta_{j1}|$, $|\eta_{j2}| < 2.5$

Reaction

B. F. (%)

$$pp \rightarrow \tilde{g} \tilde{g}$$
 89.0
 $pp \rightarrow \chi^{\pm} \chi^{0}$ 6.3
 $pp \rightarrow \chi^{+} \chi^{-}$ 2.6
 $pp \rightarrow \chi^{0} \chi^{0}$ 0.5

Event Source	σ (fb)
QCD	2.0 × 10 ⁶
ttbar	2.2 × 10 ⁴
W+jets	3.1×10^3
Z+jets	1.5 × 10 ³
mSUGRA	6.7×10^{2}

Signal: Noise ~ 1: 3000

Note: Spectra for ≥ 4 jets

Random grid search over 5 variables

$$ME_T$$
, P_{Tj} , $j=1,...,4$

assuming 1 fb-1

Quadratic & Linear Discriminants

Quadratic Discriminants

Suppose that each density s(x) and b(x) is a multivariate Gaussian

Gaussian
$$(x \mid \mu, \Sigma) = \frac{\exp[-(x - \mu)^T \Sigma^{-1} (x - \mu)/2]}{(2\pi)^{d/2} |\Sigma|^{1/2}}$$

where μ is the vector of **means** and Σ is the **covariance matrix**. In this case, can write an explicit expression for the Bayes factor

$$B(x) = s(x)/b(x)$$

Quadratic Discriminants

It is usually more convenient to consider the logarithm of the Bayes factor,

$$\lambda(x) = \ln B(x)$$

which, after eliminating non-essential constants, can be written as

$$\lambda(x) = (x - \mu_B)^T \Sigma_B^{-1} (x - \mu_B) - (x - \mu_S)^T \Sigma_S^{-1} (x - \mu_S)$$

Quadratic Discriminant

A fixed value of $\lambda(x)$ defines a quadratic hypersurface that partitions the d-dimensional feature space $\{x\}$ into signal-rich and background-rich regions.

Linear Discriminant

If, in the quadratic function $\lambda(x)$, we use the same covariance matrix for each class of events

e.g.,
$$\Sigma = \Sigma_S + \Sigma_B$$
 we arrive at

Fisher's Discriminant

$$\lambda(x) = w \cdot x$$

where w is a vector given by

$$w \propto \Sigma^{-1}(\mu_S - \mu_B)$$

Summary

1. If the goal is to classify objects with the fewest mistakes, it is sufficient to apply a threshold, that is, a cut, to the discriminant

$$D(x) = \frac{s(x)}{s(x) + b(x)}$$

2. If the goal is to extract the signal strength with minimum variance, it is sufficient to weight events using the associated weight function

$$w(x) = \frac{D(x)}{D(s) + [1 - D(x)]/k}$$