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Outline 

1- Introduction: the cosmological constant in the Einstein equations. 
 
 
 
2- Observational constraints on the CC.  
 
 
 
3- Regularization (or renormalization) of the vacuum energy density. 
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The cosmological constant (CC): introduction 
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Historically introduced by Einstein to find a static cosmological solution  in       
General Relativity (GR)  [see N. Straumann, gr-qc/0208027] 
 

 



In presence of a Cosmological Constant, the Einstein field equations read 
 

  
 
 

geometry CC matter 

  Preserves covariance  
 

 Covariant derivative vanishes hence compatible with a conserved energy 
momentum tensor 

 
 Dimension length^ (-2) 

 
 The CC can always been seen as an extra source of matter: 

 
 The equation of state of the CC is:                        . The effective 

pressure is negative. 

The cosmological constant (CC): introduction 



The cosmological constant: constraints 
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detection 

Parker & Pimentel, PRD25, 3180 (1982) 

Wright, astro-ph/9805292 



    

2011 Nobel prize 

In 1998, two groups measure the expansion of the Universe and claim 
detection of a non-vanishing CC.  

 
 



8 

 The hard fact is that the following equation does not fit well the data 
 
 

 
 

 

The cosmological constant in cosmology 
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described 
by GR and if there is no other exotic fluid then the CC is non-vanishing. 

 

The cosmological constant in cosmology 
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described 
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described  
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
 
 2012: there is now a bunch of different and independent measurements  
    pointing towards this conclusion (age of the universe, SNIa, clusters  
    abundance, lensing etc …) 
 
 



The cosmological constant in cosmology 
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Example: using the CMB only, a vanishing CC now seems to be ruled out at more  
than 5 sigma …  

 

SPT data, arXiv:1210.7231 



The cosmological constant 
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described 
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
 
 2012: there is now a bunch of different and independent measurements  
    pointing towards this conclusion (age of the universe, SNIa, clusters  
     abundance, lensing etc …) 

 
 The other alternatives (in-homogeneous universe, modified gravity,          

quintessence etc …) have their own problems. 
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Quintessence 

DE 

DE 3pDE 

A possible alternative is that there is no CC but a scalar field (“quintessence”) 
playing the role of a “dark energy”.  

 

   

must be <0 

Ratra & Peebles, PRD37 3406 (1988) 



Quintessence 

15 

In these models, dark energy is dynamical and the equation of state is a time- 
dependent  quantity. Falsifiable since different from the CC 

 

Brax & Martin, astro-ph/9905040 



Quintessence 
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  Hard to find good models of particle physics which lead to the correct  
     potentials 
 
 Hard to control the interactions of quintessence with the other fields 

 
 Hard not to destroy the flatness of the potential by quantum corrections 

 
 Everything seems to indicate that w=-1 …  



The cosmological constant 
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described  
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
 
 2012: there is now a bunch of different and independent measurements  

    pointing towards this conclusion. (age of the universe, SNIa, clusters  
     abundance, lensing etc …) 
 
 The other alternatives (in-homogeneous universe, modified gravity, 

quintessence etc …) have their own problems. 
 

 Even if what we see in cosmology is not the CC, this implies a new upper 
limit on the CC energy density 



The cosmological constant 
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detection 



The cosmological constant 

19 



The cosmological constant: summary of the classical discussion  
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 Therefore, the CC remains the simplest explanation of the different  
     cosmological measurements 
 
 
 There is no sign in the observations that we need a dark energy   

different from the CC 
 

 
 At this (classical) level, we have a theory with a new fundamental   

constant and its value has been determined by the measurements to be  
 

 
 

 
 The CC is such that it is very difficult to check this value elsewhere 

than in cosmology … always a negligible effect. 
 
 



The cosmological constant: the quantum side 
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When QM and QFT are taken into account, the nature of the discussion  
 is however drastically modified [A. Sakharov, Sov. Phys. Dokl. 12, 1040 (1968)] 

Classical contribution 

Quantum contribution 

 
 The vacuum state has the following  
    stress-energy tensor 
 
 
 
 
 
 
 
 
 
  In flat spacetime, only differences  
     of energy are measurable so not  
     important …  In curved spacetime, the absolute value is important. 
 
   A priori, the  vacuum fluctuations gravitate as any other form of energy  
 
 



The weigh of the vacuum 
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An example is the Electro-Weak transition 



The value of the cosmological constant 
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detection 

“prediction?” 



The cosmological constant: the quantum side 
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Quantum contribution 

  Because of Heisenberg principle the position  
     and the velocity of a quantum harmonic oscillator  
     cannot vanish at the same time 
 
 
 
 
 A quantum field=infinite collections of  
    quantum oscillators 
 
 
 
 
  This should not cause any panic since we are  
      used to tame infinities in QFT: renormalization. 
 
  However, this particular type of infinity is usually not renormalized but  
     ignored on the basis that, in flat spacetime, only differences of energies  
     are measurable. 
 
  
 
 



The weigh of the vacuum 
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The first attempt to estimate the gravitational impact of vacuum fluctuations  
was done by W. Pauli [see “Die allgemeinen Principein des Wellenmechanik”] 

Einstein static universe 

Radiation field in a box 

“it could not even  
reach to the moon” 



The cosmological constant & QFT 
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In a modern language, the main issue is how to renormalize  the vacuum energy 
density 

 

  The vacuum contribution is expressed in terms of Feynman bubble diagrams,  
      ie diagrams with no external leg.  
 
 
  These diagrams have bad convergence properties, worst than ordinary  
      loop diagrams: they remain infinite even in the QM limit. 
 
 
  In non-gravitational physics, these graphs always cancel out. 

 
 

  When gravity is taken into account, one must regularize them.  



The cosmological constant & QFT 
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Regularizing the bubble graphs … 
 



The cosmological constant & QFT 
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Regularizing the bubble graphs … 
 

Introducing a cut-off breaks Lorentz invariance and leads to a  
wrong equation of state 

M 



The cosmological constant & QFT 
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Regularizing the bubble graphs 
 

Lorentz invariant methods (i.e. dimensional regularization) leads to the  
correction equation of state and   



Regularizing the cosmological constant 
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-  The value of the CC is the observed value at the renormalization point 
 

                                                      at         
 

-  Then, the CC becomes a “running quantity” with  
 

- Birrell & Davies, “QFT in curved spacetime” (1982) 
- Akhmedov, hep-th/0204048 
- Koksma & Prokopec, arXiv:1105.6296 

What is     in this context?? 



The cosmological constant: possible loopholes 
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  A possible loophole is that vacuum fluctuations are just an artifact of  
     QFT. However,  we observe their influence in the Casimir effect or in the  
     Lamb shift effect. 
 
 
 
 
 
 
 
 
 
 



The cosmological constant: possible loopholes 
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  Maybe vacuum fluctuations have abnormal gravitational properties?? But  
     vacuum fluctuations participate for a non-negligible amount to the mass of  
     nuclei … and they are observed to obey the UFF (WEP).       
 
 
 
 
 
 
 
 
 
 
 
 
  This implies a violation of UFF which is not seen ….  

 

Lamb shift in the nucleus 



Gravitational coupling in the QM regime 

The UFF in QM is described by the following Schrodinger equation  
 

 The validity of this equation has  been experimentally 
checked by the Collela Overhausser Werner (COW)  
experiment and by atomic interferometry. 

 
 UFF can be checked by measuring times of flight of  

quantum particles. 
 
 The classical result is recovered if  

One gram particle:  

Neutron:  
P. Davies, CQG 21 5677 (2004)  
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Conclusions: 

Summary 

 The cosmological constant problem is the impossibility to reconcile the  
     renormalized value  of  vacuum energy with its observed value in cosmology  
     and/or with the upper contraints obtained in others experimental situations. 
 
 
  It is then natural to question the assumptions made to arrive at this result: 
     failure of our renormalization technique, vacuum fluctuations=fake , abnormal  
     gravitational properties of the vacuum etc …  
       
 
  However, investigating these issues does not seem to reveal  any inconsistencies  
     (at the theoretical/observational level). 
 
 
  It is frustrating that cosmology be the only situation where one can measure  
     (and not only constrain) the CC! 
 
 
  The CC problem is a deep problem since it lies at the crossroads between  
      gravity and QM. In brief, the question is: what are the gravitational  
      properties of the quantum vacuum? 


